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Abstract—The fabrication of patient-specific tissue 

engineering scaffold is highly appreciated that requires prior 

estimation of porous and mechanical characteristics. 

Architectural controllability and reproducibility are also 

essential aspects in the development of 3D functional scaffolds. 

This work presents a computational approach to determine 

porous and mechanical characteristics of 3D scaffolds. The 

computational modeling could be a powerful tool to assist 

designing 3D scaffold with optimum characteristics as required 

for a particular patient in need. The 3D scaffolds were 

successfully modeled investigating the influences of design 

parameters on the porous and mechanical properties via finite 

element analysis (FEA) and ANSYS application software. It was 

revealed by ANSYS that the increase in porosity decreased the 

mechanical properties and increased the damping factor. The 

Scaffold porosities were obtained in the range of 47% to 95% 

with varying pore shape and size by modulating lay-down 

pattern, filament diameter and filament distance. 

 
Index Terms—Tissue engineering, scaffold, rapid 

prototyping, finite element analysis.  

 

I. INTRODUCTION 

Tissue engineering (TE) and guided tissue repair are very 

rapidly developing new areas of science. TE is evolving 

discipline that seeks to repair, replace, or regenerate specific 

tissues or organs by translating fundamental knowledge in 

physics, chemistry, and biology into practical and effective 

materials, devices, systems, and clinical strategies [1], [2]. 

The principles of TE is that tissues can be isolated from a 

patient, expanded in tissue culture and seeded into a scaffold 

prepared from a specific building material to form a scaffold 

guided three-dimensional (3D) tissue. The construct can then 

be grafted into the same patient to function as a replacement 

tissue [3].  

Many scaffolds used as medical implants and for TE 

purposes are fabricated by conventional methods (i.e., 

expanded grafts, textile weaves and braids, porous films, and 

sponges). These methods are limited in that they typically 

generate scaffolds with simple macro-architectures and 

homogeneous microstructures [4]. Critical variables in 

scaffold design and function include the bulk material or 

materials from which it is made, the 3D architecture, the 

surface chemistry, the mechanical properties, the initial 

environment in the area of the scaffold, and the late scaffold 

environment, which is often determined by degradation 
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characteristics. 3D porous scaffolds promote new tissue 

formation by providing a surface and void volume that 

promotes the attachment, migration, proliferation, and 

desired differentiation of connective tissue progenitors 

throughout the region where new tissue is needed [5], [6].  

Jaecques et al. (2004) [7] have performed a stress–strain 

aalysis of complete scaffolds via FEA to investigate the state 

of stress and strain within the scaffolds and its interaction 

with the surrounding tissues [8], [9]. Such analysis can be 

used to vary several geometrical or material parameters at the 

same time and to choose the most suitable ones for the 

replacement of natural tissues [7]. Simulations of perfusion 

bioreactors have been investigated for 3D scaffold 

performances [10], [11], [12]. Lacroix, D., and Prendergast, 

P.J. (2002) [13], [14] studied tissue differentiation and bone 

regeneration as functions of the porosity, Young’s modulus, 

dissolution rate, load condition, and recommended these as 

the possible optimal scaffold parameters that can be 

controlled by RP fabrication. 

 

II. METHOD AND PROCEDURE  

 
Fig. 1. TE scaffolds with different architectures 

 

Fig. 2. Schematic diagram for porosity calculation 

Cubic porous scaffolds (25mm × 25mm × 25mm) were 

designed with various architectures by varying design 
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parameters by ANSYS 12 software. Four different 

architectural designs were generated for mechanical 

simulation. Firstly, all possible parameters were listed down 

without any concern of mechanical properties and fabrication 

possibility. Various scaffold architectures can be imprinted 

by applying various lay-down patterns (0-90, 0/60/120, 

0/45/90/135, and 0/30/60/90/120/150) as shown in Fig. 1 

below using appropriate positioning of the robotic control 

system. The lay-down patterns of 0-90, 0/60/120, 

0/45/90/135, and 0/30/60/90/120/150 are also called 2-angle, 

3-angle, 4-angle and 6-angle patterns, respectively. Fig. 1 

shows all possible design which evaluate in this part. 

Secondly, all designs porosity and tensile properties were 

mathematically evaluated by MATLAB software. Fig. 2 

summarizes a flow chart of main characterization and 

scaffold design filter for the whole computerization analysis. 

The scaffolds with feasible parameters were analyzed for 

compression properties via FEA. The obtained mechanical 

properties for different parameters served as guideline for the 

optimization process on how the material properties and 

process parameters can be combined to obtain desired 

scaffold properties. The scaffolds’ biomechanical properties 

can be justified through in hand experimental evaluation.  
 

The porosity of different scaffolds was estimated using 

MATLAB R2007a (The Mathworks Inc.) software. The 

porosity was calculated as the percentage of void voxels 

relative to the total number of voxels within the scaffold 

model. The porosity (P) of the scaffolds was calculated by:  

P = 1 – (D/16G)(1+1/sin ) 

where L is the centre to centre filament gap, α is the filament 

orientation angle and D is the filament diameter (Fig. 2). 

 

III. RESULT AND DISCUSSION 

The porosity of various scaffolds was estimated by means 

of MATLAB software. Computational simulation was 

carried out for the various design variables filament gap (L), 

filament diameter (D) and lay-down angle. Then, for the 

optimal design of the porous architecture, the evaluation 

function of filament gap and filament diameter obtained by 

computational simulation. The porosity can be easily 

calculated from the design variable L and D for the designed 

architecture. The porosity (%) values were found to be in the 

range of 47-87% depending on the scaffold 

design/architecture. The porosity from top to bottom 

throughout the scaffold height was assumed to be the same as 

expected from precise fabrication method involving exact 

placement of the filaments during layer-by-layer deposition 

by controlled RP system. The porosity found to be directly 

controlled by the design parameters as the porosity was 

increased with the increase of filament gap and lay down 

angle. The porosity plays significant role in the regeneration 

of tissue through controlling scaffold permeability and 

mechanical property, and cell growth [15]. The higher the 

porosity, the more space is available in the scaffold for the 

formation of new tissue. The porosity should preferably as 

high as possible. However, the filament gap that induces the 

porosity should be corresponding to the filament diameter 

which means that the ratio of filament gap to filament 

diameter should be within a practical range. In reality, if the 

value of this ratio is above 3 the integrity of the fabrication 

process is hampered and stability of the scaffold structure is 

lost [16]. It is because of slacking of the filaments during 

polymer deposition, which ultimately interrupts the pore 

interconnectivity. It is in agreement that a highly 

interconnected channel network in the scaffold was essential 

for flow transport of nutrients and wastes in vivo [17], [18]. 

The increase of filament distance increased porosity and 

accordingly decreased the yield strength of the scaffold. In 

this study, a linear correlation was used to fit the data points, 

whereas the stiffness of an open porous material is usually 

represented as a function of the square of the porosity. 

Similar trends were obtained by [13], [14], [19], [20]. The 

mechanical properties curves for samples with the same 

material are very similar, allowing the comparisons of the 

mechanical response of different geometry (Fig. 3).  
 

 
Fig. 3. Relationship between effective Young’s modulus and scaffold 

porosity for a various scaffolds architectures. The effective Young’s 

modulus was defined as the axial stress (reaction force divided by area) over 

the axial strain (0.5%) 

 

IV. CONCLUSION 

Modelling, simulation and optimization of 3D scaffold 

done so far here in terms of porosity and mechanical 

characterizations were well defined. Computational models 

were developed for various 3D scaffold designs by varying 

design parameters namely, lay-down pattern, filament 

diameter and filament distance which control the porous 

characteristics and consequently, mechanical properties. The 

porous characteristics of designed 3D scaffolds were 

evaluated by MATLAB, while the finite element analysis 

(FEA) was performed with ANSYS to determine mechanical 

properties. Based on the mathematical and finite element 

analysis it could be concluded that the design parameters 

(filament diameter, filament distance/gap and lay-down 

angle) have direct influences on the scaffold porosity and 

mechanical properties. It was revealed by ANSYS that the 

increase of porosity decreased the mechanical properties and 

increased the damping factor. Compressive test results 

revealed that the scaffold’s mechanical properties were 

directly controlled by the filament diameter and distance. An 

anisotropic behavior of the scaffold was also observed which 

indicated that the mechanical properties were strongly 
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dependant on the scaffold’s filament lay-down orientation. 

This computational model can be a useful tool to predict 

scaffold architectures and properties and ultimately to 

fabricate scaffold by means of our in house built desktop 

robot-based rapid prototyping (DRBRP) system. A scaffold 

library can be developed upon successful completion of 

detailed study on the relationships among the scaffold 

materials, architectures and properties. The scaffold library 

can be a powerful database which would guide the tissue 

engineers to manufacture scaffold with required 

characteristics for patient-specific tissue engineering 

applications. This systematic computational approach could 

assist in optimizing 3D scaffold development for a 

patient-specific application by minimizing the need of 

physical experiments. These computational data would be 

utilized to develop physical 3D scaffolds using RP 

technology in combination with synthetic biopolymers. 
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