



Abstract—The graphic processing unit (GPU) gets strong

computing ability with relatively low energy and money

consumption, it has been widely used in the field of large-scale

simulation and computation. Among which the CPU-GPU

heterogeneous collaborative computing model has become an

effective ways to solve the simulation performance of large-scale

artificial society. But there are lots of problems in GPU-based

ABS. The paper proposes a GPU-based conservative parallel

discrete event simulation algorithm for ABS. We reorganize

data structure for CPU/GPU-based heterogeneous collaborative

parallel simulation, design a GPU kernel scheduling algorithm

based on conservative time synchronization strategy, propose an

efficient organization and scheduling algorithm for simulation

event and improve execution efficiency of conservative time

synchronization algorithm through the optimization of

large-scale parallel time reduction algorithm. Finally, we

analyze the algorithms proposed and the GPU-based simulation

kernel with GameOfLife model, up to 11.2x speedup is obtained

compared to CPU.

Index Terms—Artificial society, ABS, CPU/GPU,

heterogeneous collaborative simulation, conservative parallel.

I. INTRODUCTION

With years of development, ABS, the Agent-Based

Simulation, has become a main method of modeling and

simulation [1]. In complex system area, ABS has also

becomes an effective research method gradually. Social

system is a typical complex system, we built the artificial

society with ABS to analyze and predicts in some aspects of

the real social system. In artificial society, each agent

represent an independent individual of social system, it

simulates and evolves in a simulated networks such as human

society relationship network and environment road network.

However, with the improvement of artificial society

simulation, great challenges are presented to the execution

efficiency of that. Take simulation for an urban society system

for example, the amount of agents will be dozens of million,

and there will be countless nodes and edges of all kinds of

complex networks.

Parallel simulation is commonly used to improve the

execution performance of simulation; it assigns simulation

tasks to several physical processor units, in logical, each

Manuscript received January 29, 2014; revised March 12, 2014. This

work was supported in part by National Nature and Science Foundation of

China under Grant No. 91024030 and 91324013.

The authors are with the College of Information System and Management,

National University of Defense Technology, Changsha, Hunan, P. R. China,

410073 (e-mail: listyle1991@gmail.com)

processor is called logical process (LP), several LPs execute

simulation task collaboratively in parallel to shorten

simulation time [2]. However, because of the huge investment

for large scale compute cluster and the limitation of

bandwidth between clusters, just increasing the cluster size

and the amount of CPU cores blindly cannot obtain the

corresponding performance improving to the investment.

Under this background, a lot of co-processors such as GPU

and MIC etc. boom in scientific computing area, because of

the advantages of low power consumption, strong ability of

parallel computing and relatively low prices etc. So far GPU

has provided efficient solutions in fluid mechanics [3],

molecular dynamics [4], bio-informatics [5] and some other

areas. How to take advantage of GPU in simulation speedup

also becomes hot research topic. For example, Perumalla et

al., experiment on several typical agent-based simulation

application in GPU, and obtain large speedup compared to

that in CPU [6], and he also realize the simulation of diffusion

system in GPU by the event driven and time step discrete

event scheduling algorithm for the first time [7]. Hyungwook

Park et al., present a framework of discrete event simulation

application based on GPU [8], which divide the input event

the queue into several sub-queue to enhance the degree of

parallelism of event executing in GPU, it achieves good

execution performance in queue simulation system [9].

Wenjie Tang, Yiping Yao et al., realizes a general

GPU-based discrete event simulation kernel, and proposes an

expansion-aided synchronous conservative time management

algorithm, and a memory management algorithm, which solve

the problem of memory access conflict in GPU parallel

process, and raise the parallelism of simulation kernel by

adding more concurrent events [10], [11]. Consequently,

people try to maximize the performance of a single compute

node, integrate the strong computing performance into

parallel simulation. GPU, as a high performance and widely

used co-processor, heterogeneous collaboratively compute

with CPU is a good ways to improve the execution

performance of large scale artificial society and gradually

becomes a hot research topic. Aaby G and Perumalla present a

“B+2R” latency hiding scheme in CPU/GPU heterogeneous

computing platform to solve the bottleneck of communication

between heterogeneous process units in Agent simulation

[12].

Different from Wenjie Tang’s work [10], [11], the paper

builds a GPU-based agent parallel simulation kernel within

CPU/GPU heterogeneous collaborative computation

according to the characteristic of artificial society. In the

second part, the paper will introduce some background

A GPU-Based Simulation Kernel within Heterogeneous

Collaborative Computation on Large-Scale Artificial

Society

Li Zhen, Qiuxiao Gang, Guo Gang, and Chen Bin

205

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

DOI: 10.7763/IJMO.2014.V4.374

knowledge related to large-scale artificial society, GPU and

CUDA; in the third part, the discussion is center on the basic

data structure of GPU-based parallel agent simulation kernel,

kernel scheduling algorithm, event management and

scheduling algorithm and time reduction algorithm, etc. In the

fourth part of the paper, it takes a specific GameOfLife

experiment case to test and verify the performance of the

GPU-based simulation kernel; lastly, the fifth part concludes

the whole paper and the discussion of the research work in

future.

II. BACKGROUND

A. Agent-Based Artificial Society

The origin of artificial society research is the

social-cybernetics presented by the founder of cybernetics

Norbert Wiener, by adopting the idea of bottom-up, it builds

complex society system model using local connection rules

with technology of agent-based simulation, and becomes a

new method of social science research. With this method, the

computer should abstract each individual into individual

model called agent. Then plenty of agents interact by rules,

which will bring emergent of some macro behaviors, thus

researching on the emergent can help understanding and

explaining the macro phenomenon.

Generally, we abstract the process above as sense-think-act

paradigm, in every simulation time step, agent senses the

information of environment (including information of

environment model and the status info of other connected

agents), then it makes estimation and decision with these

information and its action rules, finally it acts to change status

of itself, environment and even other entities.

It can be seen from the above paradigm that agent is

connected with network topologies which specifies the action

ranges and form of agent’s sense and action. Generally there

are 5 kinds of topology structures between Agents: “Soup”

Model, Cellular Automata, Euclidean 2D/3D Space, Network

topology, Geographic Information System [13].

Most social system researched with Agent-based artificial

society simulation are large-scaled, Take the GSAM program

[14], [15] which armed at disease transmission research as an

example, a disease transmission model on a global scale is

built, it also runs successfully based on agent-based

simulation. So, compared to other normal agent-based

simulation, agent-based artificial society has its own

characteristic:

1) The number of agent is enormous, and the network

topology is huge and complex.

2) The action rules of agent have the characteristics of high

unity and concurrency. A large number of agents are used

to simulate the same type of people in artificial society,

these Agents step in a unified global time and process the

states evolution with the same kind of action rules.

B. GPU and CUDA

GPU (Graphic Processing Unit, GPU) was firstly appeared

as a graphic processing unit, it was used to graphics rendering,

with the development of hardware and software technology,

people come to realize that GPU has its own advantages and

characteristics in scientific computing area over CPU. In

recent years, the computing power of GPU has been growing

at more than the Moore’s law. Tianhe-I which has been the

first of supercomputers gains great computing performance

with thousands of GPU working cooperatively.

Take the GPU made by NVIDIA co. for example [16], on

the hardware structure, there are several SM (SM, Streaming

Multi-processors) in a GPU process unit, and a SM contains

several SP (SP, Streaming Processors), which is commonly

called the core of GPU. These cores execute currently in SM

and share the same global memory, and each SM contains a

shared memory so that the SP of the same SM can share it.

What’s more, there is global constant memory and texture

memory to be shared.

On the programing structure, the NVIDIA co. design a

specialized development library for GPU called CUDA,

which can offer users friendly program interface to hide the

details of the underlying hardware. CUDA is a C-like

language and easy to learn. Although it can only be used in

GPU of NVIDIA co., it has still been widely used

CUDA can be divided into three layers based on hardware

structure: grid, block and thread. Take, for example, GPU

with the computing performance of 2.0, a grid is commonly

composed of 65535*65535 blocks, and a block is composed

of 1024 threads. Thus, CUDA can map blocks in grid to

different SMs and map threads in blocks to different SP. Fig.

1 shows the general programming model of CUDA.

Host
Code

Serial Execution GPU
Kernel

GlobalMemory

SM

Share memory
Share memory

Share memory
Share memory

. . .

SM

Copy data from Host
memory to GPU memory

Copy result
back to Host

memory

Grid

Block(0,0) Block(0,1) Block(0,2)

Block(1,0) Block(1,1) Block(1,2)

Thread(
0,0)

Thread(
0,1)

Thread(
1,0)

Thread(
1,1)

Assign one
Block

execute in
one SM

GPU
Device

Fig. 1. CUDA programming model.

III. GPU-BASED SIMULATION KERNEL

The characteristic of artificial society bring severe

challenges to the execution of simulation. Integrating GPU

into simulation computational resources, in which GPU is

treated as an isolated computation node to compute models

collaboratively with CPU, is a good way to solve the

execution efficiency problem of large-scale artificial society.

The paper designs a GPU-based conservational parallel

discrete event simulation kernel and realizes it.

206

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

A. Data Structure and Kernel Scheduling Algorithm

The data structure supports discrete event simulation; it

includes event and organization of event queues. But

furthermore, in order to support CPU/GPU-based

heterogeneous collaborative computation, we need to

redesign the data structure as Fig. 2 shows.

Fig. 2. The organization and mangerment of agents and events in GPU memory.

Agents are organized into an agent pool in GPU, each agent

maintains an input event queue denoted as d_Event In Queue

and an output event queue denoted as d_Event Out Queue,

both event queues are arranged in time order. The former one

is used to receive all the events which are sent to its

corresponding agent, the latter one is used to caches the

events produced in running process for its corresponding

agent. The organizational architecture is designed in the

consideration of two aspects reason: the first, to separate the

input event queue from the output event queue can improve

the parallel execution efficiency of GPU while don’t

considerate the interactivity with other threads; the second,

each agent maintaining its own event queue bypasses memory

access conflict of parallel event and make for promoting the

degree of parallelism. In the whole process of simulation,

event flow includes CPU to CPU, CPU to GPU, GPU to GPU,

and GPU to CPU. Therefore in GPU-based simulation kernel,

event scheduling involves event interaction between CPU and

GPU. Accordingly we design two event buffers in each device

to realize event interaction between CPU and GPU, which are

Event Buffer From CPU and Event Buffer To CPU in GPU

and Event Buffer To GPU and Event Buffer From GPU in

CPU.

GPU-based simulation kernel is scheduled by CPU; Fig. 3

illustrates the GPU-based simulation kernel scheduling frame.

In the Initialization phase, CPU is responsible for

initialization of GPU device and creation of the data structure

in GPU-based simulation kernel. In the Pre Initialize Model

phase, the GPU is launched to execute model’s initialization

function, which initializes the agent objects and event queues.

After completing the initialization works, all the event queues

contain an initial event whose simulation time is zero. Then in

the Reduce Time phase, it take the first event out from each

event queue, and launch a GPU kernel to reduce their

simulation times, the reduction result is the minimal

simulation time among the events, according to conservative

time synchronization algorithm, the minimal time is the global

simulation time. Then judge whether the global simulation

time is larger than simulation stop time, if so, jump to the

END phase; if not, turn to Execute Model phase. In Execute

Model phase, GPU kernel is launched to executed agent

model, each thread execute in parallel to see if the event time

of its corresponding agent’s event queue is less than the global

simulation time, if so, the thread preform an agent update.

After all the thread finish its work, the Synchronize Event

phase begin, in order to avoid multithreads currently access

the same event queue in the running process, the events which

is new generated should be synchronously received. After

Synchronize Event, turn back to Reduce Time, and repeat the

operation above.

Initialize

PreInitialize
Model

ReduceTime

Execute
Model

Synchronize
Event

End

minTime < SimulationTime

minTime >
SimulationTime

Fig. 3. GPU-based simulation kernel scheduling flow.

B. Event Organization and scheduling

In CPU/GPU-based heterogeneous collaborative parallel

simulation engine, each compute node (GPU or CPU) need

time synchronization and event communication. So, the event

organization and scheduling in GPU should involve two

aspects: the first is event communication between CPU and

GPU, another one is event communication in GPU.

1) The event communication between GPU and CPU is

managed by Event Buffer From CPU and Event Buffer

To CPU. When the agents perform update operation,

they just take the first event out from their own input

event queue d_Event In Queue, so when CPU send event

207

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

to GPU, firstly it put all the events whose receiver is in

GPU into Event Buffer To GPU, then perform a data

transformation, copy the data from Event Buffer To GPU

to Event Buffer From CPU. After that the agent objects in

GPU read the events in Event Buffer From CPU to see if

there are events whose receiver is itself in parallel, if so,

push the events into its d_Event In Queue.

2) The event communication between GPU is performed by

the agents whose event receiver is also in GPU. The

agents in GPU take the first event out from d_Event In

Queue to perform update operation. In update process,

the events which are new generated are directly pushed

into d_Event Out Queue. In Synchronize Event phase,

the events whose receiver is in GPU are sent from the

d_Event Out Queue to the corresponding d_Event In

Queue. But, in large-scale agent simulation, many agents

may send event messages to the same agent unavoidable.

Then the problem is to solve memory access conflict

when multithreads write to the same d_Event In Queue in

GPU. The paper gives an event message output algorithm

to solve the problem above. We make use of atomic add

operation in CUDA, that operation can be regarded as a

synchronization point at which parallel threads perform

in turn. Thus, every d_Event In Queue contain a public

variable denoted as queue Wait and a public unsigned

integer array denoted as temp Event, when multithreads

access d_Event In Queue currently, the atomic add

operation on queue Wait can record the order of each

thread which is accessing the queue. Then each thread get

a numeral ID which ranks in order and assign address of

event performed by itself to the IDth variable of temp

Event. After that, every agent performs its d_Event In

Queue; push the events in temp Event into d_Event In

Queue in parallel. Fig. 4 illustrates the pseudo code of the

event output algorithm.

Fig. 4. GPU-based event output algorithm.

C. Large-Scale Parallel Time Reduction Algorithm

The core matter of GPU-based parallel discrete event

simulation is to insure correct causality between events. In

conservational time synchronization algorithm, that is to give

correct global simulation time. So each step of simulation

performs an operation of global event time reduction. When

dealing with large-scale artificial society, the scale of event

scheduling can easily reach sever million. So, to decrease the

execution time of reduction is the crux of improving the

performance of GPU-based simulation kernel.

Reduction algorithm is a typical recursive algorithm, so

combining the programming feature of GPU, the large-scale

parallel time reduction algorithm in GPU should take two

problems into account: the first one is how to realize recursion

in GPU; the second is how to realize the global

synchronization of all the threads. Fig. 5 illustrates the pseudo

code of the time reduction algorithm in GPU.

Fig. 5. GPU-based large-scale time reduction algorithm.

As all we know, recursive algorithm is composed of many

reduction steps. The number of times to be reduced gives; the

number of steps knows. But the hardware structure of GPU

determines that GPU could not support recursion well. In

208

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

order to realize it, a bad way is to let CPU launch GPU kernel

recursively, but it increase the burden of CPU, and decrease

parallel execution efficiency of GPU by decompose reduction

into server GPU kernel function, thus at the same time

increase the time for kernel launch. Based on these

considerations, the paper set a control variable denoted as

cycle, when the algorithm begins, cycle is initialized by 1,

after each reduction, multiply cycle by 2, and perform the

reduction step in circle until cycle is larger than the number of

reduction steps.

Because of the order being launched and speed of

execution, the time used in one reduction step of work threads

in GPU is not the same. So after each parallel reduction step, a

global synchronization of all the threads is needed. While the

synchronization operation is limited in one SM, namely only

the threads in one block can be synchronized in running

process. As the analysis above, we design a reduction

algorithm that all the parallel operation is finished in one

block. Suppose the thread number in one block is denoted as

THREADNUM, then each work thread goes through the time

array by increment THREADNUM. In theory, the reduction

algorithm can be any scale.

IV. EXPERIMENT

In order to verify the performance of GPU-based

simulation kernel, the paper design a Game of Life model to

be scheduled and processed in GPU. In Game of Life model,

all the agents are organized into a 2-dimension grid, whether

the agent in the grid is alive is determined by the number of

agents alive in its 8 neighborhoods. In the process of

evolvement, an agent relives when there are 3 agents alive in

its 8 neighborhoods, and dies when the number of living

agents larger than 3 and smaller than 2.

The experiment performs on a 2-dimension 100*100 grid,

altogether 10000 agents. Simulation runs 120 seconds.

Experiment hardware condition is Intel Xeon E5645 2.4GHZ

12 cores CPU and a NVIDIA Tesla C2050 GPU, system

memory is 64GB. Tesla C2050 has 448 stream processers,

compute ability is 2.0, and global memory is 2GB. As the

software condition, MPICH2 is used to realize

communication between CPU cores, GPU uses driver and

SDK of CUDA 5.0 version.

The Game of Life model is experimented on 1core, 2 cores,

4 cores, 8 cores and GPU separately; experiment result is

showed on Fig. 6. Different color blocks on the figure

represent different important phase of the whole simulation

process, they are initialization phase, model execution phase,

time reduction phase, and event receive synchronization

phase. From a general view, the whole simulation time of

GPU obtain a speedup of 11.2x compared to serial execution

of 1 core CPU, 2.9x speedup compared to 2 core CPU’s

parallel execution, and equal to the performance of 4 cores

CPU. The crosswise comparison on CPU and GPU shows that

in CPU the time cost on event receive synchronization phase

take up nearly 90 percent of the whole time, but in GPU nearly

100 percent of the whole time is used in model execution

phase.

Combing the characteristic of hardware and discrete event

simulation algorithm, we can analyze and explain the result.

For GPU, there are hundreds of cores in physical and

thousands of threads working in parallel logistically. In our

GPU-based discrete event simulation algorithm, each agent

maintains its own event queue, thus in the simulation process,

event queues are assign on a large number of logical threads,

so in each event queue, the number of event is relative small, it

only needs a parallel execution cycle to complete the event

receive synchronization phase. But to the contrary, the event

queues in discrete event simulation on CPU are assigned on

logical process, but due to the number of cores in CPU is

relatively small, when the simulation scale is large, the event

queue on each logical process shall contain many events to be

process in event receive synchronization phase, Thus each

logical process should deal with lots of events serially. When

the model execution operation is relatively easy, the time cost

in the event receiving synchronization phase will then take up

most time of the whole simulation as Fig. 6 shows.

The NVIDIA GPU architecture is built on Streaming

Multiprocessors (SMs), and SMs use an architecture called

SIMT to organize work threads. The SIMT works in parallel

programs well, but it fails in control flow instruction which

needs lots of branch prediction. At the same time the

performance of single thread in GPU is much less than that of

a single CPU core. It can obtain a relatively higher speedup

compared to CPU when large scale threads (millions) are

launched. Because when lots of threads are launched, the

latency of single thread execution can be eliminated by

switching between threads. In the our experiment, the scale of

simulation is just 10 thousand which is relatively small, so

experiment result presents the model execution time in GPU

take the most time of simulation, and it is even larger than that

in 1 core CPU.

CPU_1Core CPU_2Cores CPU_4Cores CPU_8Cores GPU

0

20

40

60

80

100

T
im

e
(s

)

facilities

 Receive message Time

 Reduce Time

 Update Time

 Initial_time

Simulation Time Contrast

Fig. 6. Simulation time contrast on different operating environment.

V. CONCLUSION

Facing on CPU/GPU-based heterogeneous collaborative

large-scale agent simulation, the paper analyzes and

illustrates the design and realization of GPU-based parallel

discrete event simulation kernel from the organization of data

structure, kernel scheduling algorithm, event organization and

scheduling algorithm, and time reduction algorithm.

Experimenting on 10 thousand agents GameOfLife model to

test performance of GPU-based simulation kernel, and up to

11.2x speedup is obtained compared to that on CPU. The

experiment result shows that GPU has its own advantage and

209

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

feature on parallel discrete event simulation. In the future

work, we will conduct a study on aspects blow.

Design efficient Communication and synchronization

model between CPU and GPU. In heterogeneous

collaborative simulation, the low bandwidth between

different devices is the bottleneck of simulation when

evolving communication between CPU and GPU, so an

efficient ways to realize communication between CPU and

GPU is a key point to speed up heterogeneous collaborative

simulation.

Improve GPU-based simulation kernel execution

efficiency. Different algorithm designing may lead different

execution efficiency especially on GPU. How to adapt the

SIMT programming architecture is the key point of improving

algorithm efficiency.

REFERENCES

[1] M. J. North and C. M. Macal, Managing Business Complexity:

Discovering Strategic Solutions with Agent-Based Modeling and

Simulation, Oxford University Press, 2007.

[2] R .M. Fujimoto, Parallel and Distribution Simulation Systems, New

York: Wiley-Interscience, 2000.

[3] J. Tölke, “Implementation of a lattice boltzmann kernel using the

compute unified device architecture developed by NVIDIA,”

Computing and Visualization in Science, vol. 13, pp. 28-39, 2010.

[4] T. Narumi, R. Sakamaki, S. Kameoka, and K. Yasuoka, “Overheads in

accelerating molecular dynamics simulations with GPUs,” in Proc.

Parallel and Distributed Computing, Applications and Technologies,

PDCAT 2008. Ninth International Conference, 2008, pp. 143-150.

[5] Y. H Li and W. H. Zhu, “GPU-accelerated multi-scoring functions

protein loop structure sampling,” in Proc. Parallel & Distributed

Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE

International Symposium, 2010, pp. 1-8.

[6] K. S. Perumalla and B. Aaby, “Data parallel execution challenges and

runtime performance of agent simulations on GPUs,” in Proc.

Agent-Directed Simulation Symposium, 2008 spring simulation multi

conference, 2008, pp. 116-123.

[7] K. S. Perumalla, “Discrete-event execution alternatives on general

Purpose graphical processing units (GPGPUs),” in Proc. The 20th

Workshop on Principles of Advanced and Distributed Simulation,

2006, pp. 74-81.

[8] H. Park and P. A. Fishwick, “A GPU-Based application framework

supporting fast discrete-event simulation,” Simul-T Soc Mod Sim, vol.

86, no. 10, pp. 613-628, 2010.

210

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

Li Zhen was born in Jiangxi China, 1991. He is currently
a post graduate student at College of Information System
and Management, National University of defense
technology, China. He received his B.Sc. degree in
College of mechatronic engineering and automation,
National University of Defense Technology. His
research interests include agent-based modeling and
simulation, high performances simulation.

Qiu Xiao Gang is a professor at Institute of Simulation Engineering, College
of Information System and Management, National University of Defense
Technology, China. His research interests include agent-based modeling and
simulation, parallel and distributed systems, emergency management, and
knowledge engineering.

Guo Gang is an associate professor at Institute of Simulation Engineering,
College of Information System and Management, National University of
Defense Technology, China. His research interests include parallel discrete
event simulation, high performance simulation.

Chen Bin is a lecturer of National University of Defense Technology,
Changsha, China. His current research interests include modeling and
simulation about complex system.

[9] H. Park and P. A. Fishwick, “An analysis of queuing network
simulation using GPU-Based hardware acceleration,” ACM
Transactions on Modeling and Computer Simulation, vol. 21, no. 3, pp.
18-39, 2011.

[10] W. J. Tang and Y. Yao, “A GPU-based discrete event simulation
kernel.” Simulation: Transactions of the Society for Modeling and
Simulation International, vol. 89, no. 11, pp. 1335-1354, 2013.

[11] Tang Wenjie and Y. P. Yao, “An Expansion-aided synchronous
conservative time management algorithm on GPU,” in Proc. the 2013
ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, 2013, pp.367-372.

[12] B. G. Aaby and K. S. Perumalla, “Efficient simulation of agent-based
models on multi-GPU and multi-core clusters,” in Proc. the 3rd
International ICST Conference on Simulation Tools and Techniques
(SIMUTools’10), 2010, pp. 15-19.

[13] C. M. Macal and M. J. North, “Agent-based modeling and simulation,”
in Proc. Winter Simulation Conference, 2009, pp. 86-98.

[14] J. Parker and J. Epstein, “Distributed platform for global-scale
agent-based models of disease transmission,” ACM Trans. Model.
Comput. S., vol. 22, no. 1, pp. 20-45, 2011.

[15] C. L. Barrett et al, “EpiSimdemics: an efficient algorithm for
simulation the spread of infectious disease over large realistic social
networks,” in Proc. the 20th ACM/IEEE Conf. on Supercomputing,
2008, pp. 282-290.

[16] Cuda C Programming Guide, 5th ed., NVIDIA Co., 2012.

