
  

  
Abstract—Exact and general exact ordering methods are 

reviewed. Firstly, the exact ordering method is introduced, and 
few theorems were given to assign the conditions needed to 
locate the position of a required object among a group of objects 
to be ordered in a certain manner in three classes .Secondly, the 
exact ordering method is generalized to any odd number of 
classes (m). In both cases and if the required object class is put 
in the middle of other classes then the required object is located 
exactly as the object in the middle of all objects provided that 
we arrange the objects orderly in three groups in the first case 
and in m groups in the second generalized one and where 
certain defined steps are to be followed; in general m steps are 
required to determine the required object exactly and where m 
is the odd number of classes. The possibility of making the 
subject more interesting, deeper and handled in a sophisticated 
manner, through the introduction of exact ordering operators, 
is then discussed; this is by no means complete and this matter 
will constitute the subject of a future work .Finally few different 
applications are suggested in physics ,in operational research, in 
sorting files and in postal mailing. Its use as a practical 
demonstration with playing cards is also mentioned. 
 

Index Terms—Class, exact, ordering, required object. 
 

I. INTRODUCTION 
Ordering things or arranging objects in a particular manner 

is a very important problem in many fields [1]-[4]. In this 
paper, we will deal with an ordering method which gives a 
procedure to determine exactly the location of a specific 
object out of n objects provided that we know the class to 
which the object went to in each step of the procedure. By 
that we mean that if n is divisible by s (s is odd and represents 
the constant number of classes formed in each step); then the 
only information we may have about the object is that it has 
gone to the i th class where si ≤≤1 . Such situations may 
occur in practice as will discuss later. 

First, we will introduce the case of s being equal to 3, then 
we generalize to any odd s, and from there we try to proceed 
further and suggest exact ordering operators. Finally, we give 
an insight to the practical aspect of the problem [5], [6]. 

A. Some Considerations 
Consider that we arrange the n objects in s classes in order 

in such a manner that filling the classes takes place gradually 
and orderly so that the (s+1) th object goes to the first class 
and the (s+2) th object to the second class and so on ( the 
operation is classification mod s). After all n objects are 
arranged, the class containing the required object is put in the 
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central position of the classes, i.e. its position is the ( 
2

1+s  ) 

th irrespective of the order of the other classes. 
If we take these considerations into account we can then 

proceed with various cases. 
Case 1: In this case we take ln 3= , then we have the 

following theorem 
Theorem 1: If ln 3=  objects are arranged in three 

classes in an orderly fashion and the class containing the 
particular object is put as the second one in each step, then l  
steps are needed to determine the position of the r.o. and its 
position r  is given by 

2
)13( +=

l

r . 

Proof: After the completion of the first arrangement and 
putting the class containing the r.o. as the second class (step 1) 
and if r is the order of the object, then  

11 3213 −− ×≤≤+ ll r                     (1) 

After Step 2 we have  
2121 332133 −−−− −×≤≤++ llll r             (2) 

After Step I, we get 

illl

illl r
−−−

−−−

−−−×≤
≤++++
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                    (3) 

After l  steps we obtain 
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         (4) 

But we can easily see from the last inequality that 
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Two trivial examples which satisfy the previous theorem 
are when we have 03=n (and 13=n ) objects; a less trivial 
one is when the number of objects is 23=n . 

Case 2: Here, we still consider 3 classes but with 

13mn =  where 1m  is not necessarily divisible by 3; i.e. 

kmm += 21 3  where 21 ork = , and we have the more 
general theorem for the case of 3 classes. 

Theorem 2: If 13mn = and ll n 33 1 <<−  are objects to 
be arranged in three classes ordered with the required-object 
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class always put as the second one in each step of the 
arrangements, then l  steps are needed to determine the 
object order exactly. Moreover, its position is given by 

2
)1( += nr  if n  is odd and 12/2/ +== nrornr  if n  is 

even. 
Proof: Since 13mn = ; and ll n 33 1 <<− , therefore after 

step 1, the r.o. will be squeezed to the center within a width of 
objects equal to 1m . 

Now if kmm ii += +13 ; with 12 33 −−−− << ilil n  and 

21 ork = , then after step i the r.o. gets squeezed to the 
center within a maximum width of 1+im . 

After ( 1−l ) steps, the maximum width of squeezing will 
be 31;1 11 <<+ −− ll mandm . Hence, after l  step, the r.o. has 
to be at the center [5]. 

B. Important Remarks 
1) Note that the two theorems 1 and 2 can be combined into 

one general theorem and the first is treated as a special 
case of the general one .However, it is worthwhile to 
show them independently so as to get a better feeling of 
the problem and moreover to check different 
approaches .Note also that for even n there are two 
centers. 

2) We can always make n divisible by 3, by addition or 
subtraction of few units or objects. 

3) We expect that, instead of 3 classes, the two theorems 
are valid for any odd-numbered classes (i.e. 5, 7, 9, 
11,….). 

C. Two Illustrative Examples  
In this subsection, we give two illustrative examples to 

verify theorems 1 and 2. 
Example 1: If we take 23=n as the number of objects 

and if the r.o. is denoted by β  and assume after finishing 
step1 we have the arrangement: 

cde / β ab / fgh 

Then, we arrange the ordering as described above to get 

c β f /dag / ebh 

To finish step 2 we put the r.o.class in the middle to get 

dag / c β f / ebh 

From which we see that the r.o. is at position 5 as expected 
from theorem 1. (note that the number of classes here is 3) 

Example 2: Take 5315 ×==n  as the number of objects 
and let the r.o. be denoted by λ , then suppose that after step 
1 we have the following arrangement 

ABCDE / FGHI λ  / JKLMN 
Arranging the ordering, we have 

ADG λ L / BEHJM / CFIKN 
Putting the r.o. class in the middle we get (step 2) 

BEHJM / ADG λ L / CFIKN 
Again arranging the ordering, we obtain 

BJDLI / EMGCK / HA λ FN 
Now with the completion of step 3, we have 

BJDLI / HA λ FN / EMGCK 
Hence we see that the r.o λ  is at position 8 as expected 

from theorem 2. 
 

II. GENERALIZATION 
To proceed with generalization we give the following few 

definitions: 

A. Definitions 
Definition 1: The required object class (roc) is the class 

containing the object to be located. 
Definition 2: A step is the completion of the process of 

filling the classes orderly and putting the roc in the middle of 
the other classes irrespective of their orders. 

Definition 3: A width of a class of objects (or elements) is 
the number of elements in that class. 

Now, with the above definitions we proceed to present the 
following theorems: 

Theorem 3: If lmn =  are objects to be arranged orderly 
in (odd) m classes, then l  steps are required to locate any 
required object and its position is given by 2/)1( += nr  . 

Proof: It clear that after step i the the r.o. gets squeezed to 
the center within a width equal to ilm −  and surely after l  
steps, the r.o. will be exactly at the center.  

Theorem 4: If smn ×= ,where ll mnm ≤<−1  and s  
is not necessarily divisible by m  ( m  is odd), are objects to 
be arranged orderly in m classes, then l  steps are required to 
determine the position of any r.o. and its order r is given by 

2/)1( += nr  if n is odd, and 22/2/ +== nrornr  if n is 
even. 

Proof: The proof is a direct consequence of the previous 
theorem if one observes that the maximum width for the roc 
in this case is equal to ilm −  after step i. 

B. More Illustrative Examples 
Again, we give two more illustrative examples to fulfill 

theorems 3 and 4. 
Example 3: Let 2525 ==n , then according to theorem 

3, 5=m  and 2=l ; therefore the r.o. is obtained in two 
steps and its position is the 13 th position. 

We work this example in details, where we assume that the 
r.o. is denoted by Σ  , and after step 1 we have the ordering 

ABCDE / FGHIJ / Σ LMNO / PQRST / UVWXY 

Now we arrange orderly to get 

AF Σ PU / BGLQV / CHMRW / DINSX /EJOTY 

Putting the roc in the middle of all classes, we get (Step 2) 

BGLQV / CHMRW / AF Σ PU / DINSX / EJOTY 

From the last step we see that the position of the object ( Σ ) 
is the 13th as expected from theorem 3 [6]. 

Example 4: Let 3515 ×==n  then since 25155 <<  and 
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according to theorem 4 the required object which we will 
assign as the letter A will be determined in two steps at 
position 8(note that number of classes here will be 5).This is 
done as follows; 

Assume that the r.o. A, after step 1, appears in the 
arrangement as 

bcd/efg/Ahi/jkl/mno 

Now if we arrange the objects orderly we get 

bgk/cAl/dhm/ein/fjo 

With the completion of step 2 we have 

fjo/ein/cAl/bgk/dhm 

Hence we see that the required object A is at position 8 as 
expected from theorem 4. 

 

III. EXACT ORDERING OPERATORS (SUGGESTED WORK) 
In order to proceed on exact ordering, I believe that it 

should be formulated in operator theory; hence we start with 
the following definitions and notations: 

Let P  be a set of lmn =  elements with m  being odd, 
then we have the following definitions 
1) An ordering )(POm  of P  is a permutation of its 

elements { },.........,, cba  such that they 
satisfy )(mod mba ≡ . The residues of the classes 
are )0(,.....3,2,1 ≡= me . 

2) The required element class (rec) is the class containing 
the required element (re) to be located exactly. 

3) A set of elements in a class is a set of elements of the 
ordering )(POm  in that class. 

4) The length L of a set of elements is the number of 
elements in that set; so L for any class is given 
by 1−= lmL . 

5) The order of an element in a class is its position in that 
class. 

6) The center of a class is that element whose order in that 

class is )
2

1(
1 +−lm . 

7) A central ordering )(POmc  of the ordering )(POm
 is 

permutation of P  such that the residue of rec 
is 2/)1( += me ; irrespective of the orders of the other 
classes .So residues are changeable. 

8) A step operator S  is defined by the successive 
application of )(POm

 and )(POmc
 once, i.e. 

)()( POPOS mmc= . 
9) An exact ordering )(POE  is defined as )()( PSPO l

E = . 
Now with these notations and definitions one can proceed 

with formulating a solid theory of exact ordering operators, 
and this will constitute the subject of a future study. 
However, we may proceed a little further and give the 
following important theorem: 

Theorem 5: If P is a set of lmn =  elements, then 
)(POE  will determine a required element (RE) exactly and 

its order will be given by )
2

1( +n  . 

Proof: It is clear that, in general, applying jS will result in 
squeezing the RE to the center of class )

2
1( +m  within a 

length of jl
s mL −=  .Hence, applying )( l

E SO =  implies that 

1== −ll
s mL ; and this means that the RE is at the center. 
Note that the theorem can be generalized to cases of n  

elements with n  divisible by m  and such that 
ll mnm <<−1  .In this case EO  needs to be applied l  times 

to get the RE at the center .The proof is similar to the above 
one. 

Example 5: Let P={ }λ,,,,,,,, HGFEDCBA ; here we see 

that 239 ==n  and let λ  be the RE to be located exactly. 
To see the effect of applying exact ordering operators, let 

us arrange P as shown in Table I below: 
 

TABLE I: FIRST ARRANGEMENT OF P. 
1 2 3 4 5 6 7 8 9 
A B C D E F G H λ

 
Now, Operating with O3 we get the ordering as in Table II 

 
TABLE II: THE ARRANGEMENT AFTER APPLYING O3. 

1 2 3 4 5 6 7 8 9 
A D G B E H C F λ

 
To complete an S operation, apply O3c to get the 

arrangement in Table III. 
 

TABLE III: THE ARRANGEMENT AFTER AN S OPERATION. 
1 2 3 4 5 6 7 8 9 
A D G C F λ  B E H 

 
Apply again O3 to obtain the ordering as in Table IV below 

 
TABLE IV: THE ARRANGEMENT AFTER ANOTHER O3 OPERATION. 
1 2 3 4 5 6 7 8 9 
A C B D F E G λ  H 

 
TABLE V: THE ORDERING IN ITS FINAL STAGE-COMPLETING S2. 
1 2 3 4 5 6 7 8 9 
A C B G λ  H D F E 

 
And with an application of O3c we have the final 

arrangement as in Table V 
Therefore, we have operated with S2 on the completion of 

this step; and we got the RE λ  at the center ( 
2

132 +  ) as 

expected from theorem 5.  
It is being noted that many applications of exact ordering 

may arise and this will be discussed in the conclusion part [7], 
[8].  

 

IV. CONCLUSION 
An Exact ordering method was introduced where a 

required object is to be located, exactly, among n objects 
arranged in 3 classes. If ln 3=  is the number of objects and 
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certain defined steps were followed, and then l steps are 
needed to locate the required object exactly. A similar 
procedure is adapted to generalize the method to any 
odd-numbered classes and very similar results were obtained 
for determining the required object exactly .Exact ordering 
operators were then elaborated on and few definitions were 
given with the aim of getting a deeper insight to the subject. 
A modest effort was presented to illustrate a theorem and a 
sample example to show the use of exact ordering operators 
and how to apply them .However, the work is far from 
complete and the subject will be a matter of a future study. 

It is to be noted here that exact ordering may be of use in 
many fields; for instance it may prove useful in computers in 
sorting files. It is clear also that it might be useful in 
combinatorics and in group theory. 

We may consider the implications of exact ordering in 
physics in designing new detectors which can be more 
efficient .Threshold detectors, in which materials are used 
that require neutrons above certain energy to cause 
activations ,are an example. The method can also be useful in 
different branches of statistical mechanics. 

Moreover, we may think of its applications in postal 
mailing and in criminal investigations .Another probable 
application is the field of operations research in queuing 
theory.  

Finally, the given illustrative examples can be 
demonstrated as a trick with playing cards and with the 
distributor blind-folded and a partner as a monitor. 
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