

Abstract—Current interactive computing state-of-the-art

environments, libraries, and frameworks open the door for
engineers to run their simulation codes in an interactive mode,
i. e. allowing for estimations of the state and tendency, as well as
modifications, during a simulation program runtime without
the necessity for their own expertise in efficient algorithms and
data structures, high-performance computing, and visualisation.
Nevertheless, when it comes to the real-time response of the
simulation to this interaction − namely, keeping the connection
between the user’s change and its effect intuitive or at least
observable − these environments are still limited in their
possible application and, furthermore, often entail heavy code
changes in order to be coupled to existing codes. Therefore, we
introduce an integration framework applicable to different
engineering applications, which with only minor code
modifications involved supports distributed simulations as well
as visualisation on-the-fly and enables real time interactive
computational steering. Furthermore, we present its integration
into a previously existing pre-operative planning environment
for joint replacement surgery, which makes possible an
interactive patient-specific selection of the optimal implant
design, size, and position. The environment is supposed to
enable the real-time surgeon’s interplay with virtual models of
bones and implants in 3D, thus, simultaneous computation and
visualisation of the load transfer between the bone and the
implant. Moreover, we tackle the problem of long
communication delays which occur in the case of rigid coupling
of simulation back-ends with visualisation front-ends and
handicap a surgeon in observing which of his modifications
leads to which outcome.

Index Terms—Bone Mechanics, computational steering
environment (cse), human femur, interactive computing,
message passing interface (mpi).

I. INTRODUCTION
In general, interactive computing is the practice of the

real-time intervening of a user with a program during the
program runtime in order to estimate or influence its course
and final outcome. It is often associated with numerical
simulation experiments, especially where the pre-processing
phase is time consuming and, thus, the opportunity to modify
interactively either the geometry of the simulated scene, or
boundary conditions, or individual parameters represents an
indispensible feature. On the front end, a graphical user

Manuscript received October 5, 2011; revised October 31, 2011. This
work was supported by the Munich Centre of Advanced Computing (MAC)
and International Graduate School of Science and Engineering (IGSSE) at
Technische Universität München (TUM).

The authors are with the Chair for Computation in Engineering,
Technische Universität München, Arcisstraße 21, 80333 Munich, Germany
(e-mail: knezevic@bv.tum.de), (e-mail: mundani@tum.de), (e-mail:
rank@bv.tum.de)

interface and the visualisation of results on demand are
desirable, while on the back-end, an interruptible, often time-
and memory-consuming simulation is running on a
high-performance cluster (Fig. 1).

Nowadays, many tools which “provide an environment in
which researchers themselves can build interfaces and
visualisations to the simulation” [1] are available, however,
mostly having limited scope of application and/or requiring
significant code invasion during the integration phase.

Magellan assumes the export of monitoring and steering
objects from an application. Afterwards, for instance, a
collection of instrumentation points, such as so-called
actuators, knows how to change an object without disrupting
application execution. Pending update requests are stored in a
shared buffer until an application thread polls for them [9].

In EPSN API [10], XML description of simulation scripts
is introduced to handle data and concurrency at
instrumentation points. Here a steering server, when
receiving requests, determines their date, thus, the request is
executed after the first date that fulfils a condition. Reacting
on a request consists of releasing the predetermined blocking
points.

Steereo [11] is a light-weight steering framework, not the
complete steering environment, where the client sends
requests and the simulation side will execute them and send
some response. However, the requests are not processed
immediately in the simulation, but rather stored in a queue
and executed at predefined points in the simulation. A user
has to determine when this queue should be processed in his
code.

Fig. 1. Framework layout − user interaction with the running simulation: On
the front-end a user is performing changes via graphical user interface, the
information is sent to the simulation via the network.

G-HLAM [12], on the other hand, focuses more on fault

tolerance, i. e. monitoring and migration of the distributed
federates. The group of main G-HLAM services consists of a
Broker Service which coordinates management of the
simulation, a Performance Decision Service which decides
when performance of a federate is not satisfactory, thus,
migration is required, and a Registry Service which stores
information about the location of local services. It has been
tested on the application supporting surgeons with

Interactive Computing−Virtual Planning of Hip Joint
Surgeries with Real-Time Structure Simulations

Jovana Knežević, Ralf-Peter Mundani, and Ernst Rank

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

307

simulations of vascular reconstruction, using distributed
federations on the Grid for the communication among
simulation and visualisation components.

Further comparison of different frameworks,
computational steering environments, libraries, and tools is
given in [2].

In the previous years, within the Chair for Computation in
Engineering and with our cooperation partners at the Chair
for Computer Graphics and Visualisation at Technische
Universität München, an environment for pre-operative
implant planning for hip joint replacement has been
developed [6]. The ultimate goal of this medical procedure is
to keep the stress distribution after insertion of an implant as
close as possible to the physiological state, since removal of
stress from certain regions in the bone due to the insertion of
an implant might cause osteoporosis, degeneration of bone
tissue, and lead soon unavoidably towards a new surgical
intervention.

The developed analysis tool allows for implant selection
and positioning based on prediction of response of
patient-specific bone to a load that is applied. For this, two
indispensable components have been coupled.

One is a simulation engine based on the models of femur,
i. e. thigh bone geometry constructed by CT/MRI-data and
using the Finite Cell Method (FCM), a variant of the high
order p-FEM code with fictitious domain approach, as
proposed in [3]. With this method, models with complicated
geometries or multiple material interfaces can be easily
handled without an explicit 3D mesh generation. The basic
idea is an extension of the weak form of the partial
differential equation beyond the physical domain up to the
boundary of an embedding domain, which can easier be
meshed.

The other is a sophisticated visualisation platform that
allows the intuitive exploration of the bone geometry and
particularly the mechanical response to various load
situations of the physiological state and the post-operative
state of an implant-bone situation in terms of stresses and
strains [4, 5]. For this purpose, after sending an update of the
settings − either after insertion/moving an implant, or testing
a new position/magnitude of the forces applied to the bone −
for each element and corresponding tensor a scalar value, i. e.
the so-called von Mises stress norm, can be calculated and
visualised as shown in Fig. 2.

Fig. 2. Von Mises stresses (calculated for a polynomial degree p = 6) of a
healthy bone (left) and after a virtual surgery (right) under load of 1500 N
and 1125 N exerted at the femur’s head and the great trochanter, resp.; darker
colours refer to regions with higher stress magnitude, thus, providing an
overview of how the implant changes the stress distribution in the
surrounding bone tissue.

The challenges in developing such a two-component
analysis tool are described in more detail in [6], [4], [5].
Unfortunately, due to the rigid communication pattern
between the components, the new setting could be considered
by the simulation only after the result for the previous one has
been calculated and sent to the user. Therefore, the higher
polynomial degrees were used, the longer became the total
time for computing the outdated result plus the new ones until
one could finally perceive the effect of his last change.

Hence, the central topic of this paper is the way in which
these two components are glued in a new approach via our
framework in order to allow for instant feedback about the
changes performed by a surgeon.

II. GENERAL IDEA OF THE FRAMEWORK
In order to achieve an immediate response of any

simulation back-end to changes made by the user, the regular
course of the simulation coupled to our framework is being
interrupted, using software equivalents of hardware
interrupts, i. e. signals, in small, user-defined cyclic intervals
followed by a check for updates [2].

If there has been any change on the user side, the new data
is received and simulation state variables are manipulated in
order to make the computation stop and then restart from an
adequate point, according to the updated settings (new
geometry, boundary conditions, etc.). It is the responsibility
of a user to instruct the simulation program how the received
data should be matched to the simulation data.

After the check for updates has been done, independently
from whether any has been received, the control is given back
to the simulation which continues from the state saved at the
previous interrupt-point. However, this unconditionally
happens only until the values of the simulation state variables
can be compared earliest. Consequently, if the result of the
comparison indicates so, the upcoming computation steps are
skipped, meaning automatically re-starting the computation
with new settings again.

As elaborated in [7], a significant remark is that, to
guarantee the correct execution of a program, one should use
certain type qualifiers for the variables which are subjects to
sudden change or objects to interrupts. Namely, ensuring
atomicity of certain operations on the data is crucial for
deterministic behaviour of the program. In addition to this,
insuring memory consistency is necessary, not only in the
sense of accessing always the correct values of variables in
the main memory instead of potentially outdated values in the
cache due to certain compiler optimisations, but also in the
sense of releasing all allocated memory which is not
supposed to be accessed anymore, or which is even not
possible to access as soon as the new computation starts.

With some intermediate (one iteration in case of an
iterative solver, e. g.) or the complete computation (in case of
a direct solver, e. g.) being finished without an interrupt, new
results are handed on to the user process for visualisation.
Nevertheless, due to the fact that the framework is intended
to be integrated in various application scenarios, hence it
cannot be predicted in which way the results should be
interpreted in each of them, it is again user’s responsibility to
prescribe to the front-end process how to interpret the

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

308

received data so that it can be appropriately visualised.
As given in more detail in [2], since many applications are

amenable to concurrent execution, they are programmed
nowadays using either shared memory, message passing, or
these combined in hybrid parallel algorithms, thus, the design
of our framework takes into consideration and supports all of
them. These results in an extra effort to ensure correct
program execution and avoid synchronisation problems
when using threads.

In case of pure multithreading (with OpenMP / POSIX
threads, e. g.) used for the computations on the simulation
side, the idea is that as soon as a random thread is interrupted
by a signal at the expiration of the user-specified interval, it
checks via the functionality of the Message Passing Interface
(MPI) if any information regarding the user activity is
available. If the aforesaid probing of the user’s message
indicates that a change has been made, both the receiving and
the other threads instantly obtain information about it due to
the manipulated state variables, all of them becoming aware
that their computations should be started over again and
proceed in the way in which clean termination of the parallel
region is guaranteed, as described in more detail in [7].

The same is valid for the case of hybrid parallelisation of a
simulation (i. e. MPI and OpenMP), where not only a random
thread in each active MPI process is being interrupted by
signals to check for the updates, but also all the processes
have to be explicitly notified about the changes performed by
a user, which involves additional communication overhead.

Nevertheless, to prevent one master process, the direct
interface of the user’s process to the computing-nodes, i. e.
slaves, from becoming a bottleneck, a hierarchical
non-blocking broadcast algorithm for transferring the signal
to all computing nodes has been implemented (Fig. 3), where
all the computing nodes have their own signals invoked for
their own fixed intervals.

Although all the simulation processes have to invoke their
own signals to do checks for updates, this, due to the very
small intervals in-between the two checks, still does not
cause intolerable delays, even despite the necessary
synchronisation among the processes.

III. TEST CASE–THE BONE

A. The Communication Pattern
The main functionality provided to aid the pre-operative

planning consists of the insertion of different implants,
changing their position, applying forces at different places
and with different intensity. The result a surgeon receives in
terms of stresses distribution is accordingly visualised.

So as to achieve receiving of any feedback in real-time
with the FCM simulation running on standard
consumer-class hardware, and this even for higher accuracy,
i. e. polynomial degrees of basic functions used in FCM
higher than 4, our framework with several valuable features
has been utilized.

To profit from all the features of the framework and
overcome the problem of long communication delays, the
initial structure of the components to be coupled has been
slightly adapted to our needs.

Fig. 3. Hierarchical communication pattern and transfer of the signal to all
the processes. User process sends new settings to master of the simulation;
master process checks for those updates in small, cyclic simulation specific
intervals until an update is received, when it is transferred to all of the slaves
in the communication hierarchy. Meanwhile, the slaves are doing their own
checks in their own fixed intervals.

On the front-end, the main thread is in charge of fetching

user interaction data and rendering. It is important to make
sure that sending of the update information is done only, and
also immediately, when the user is actually intervening via
graphical user interface.

Consequently, in a second thread a loop for sending
fetched updates is implemented. For sending of updates we
use non-blocking MPI routines, giving the user an
opportunity to provide for the computation the information
about all of his modification requirements either immediately
or in timely fashion, i. e. in specified intervals.

To our advantage, this thread is completely independent
and, thus, not synchronised with the remaining third thread,
which is dedicated for waiting to receive results as soon as
these are available. In the first thread the rendering loop is
continuously being executed, thus, this data becomes
immediately visible to the user. A simplified communication
pattern between the modules on the front-end and simulation
on the back-end is illustrated in Fig. 4.

In order to benefit from this pattern, what becomes a
challenge, is exploring the way in which the simulation
running on the back-end can simultaneously become aware
of the changes made on the front-end, i. e. when and how to
interrupt the simulation kernel so that it can instantly receive
an update and re-compute the solution for a new system of
equations. To describe the challenge in more detail, we
provide a basic overview of the simulation kernel structure.

Fig. 4. Communication pattern between the two components. From the user
front-end the changes of the data are recognised on a per-frame basis and sent
immediately to the simulation via non-blocking routines. The simulation
results, in terms of stresses, are then calculated and sent back to the user.

B. The Simulation Kernel
At the beginning, the femur voxel information generated

on the visualisation side based on the quantitative computed
tomography (QCT) scans and indicating the bone strength is

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

309

transmitted over the network, thus, the rectangular domain
which embeds the entire femur is generated. The domain is
then divided into sub cells of the same size. For the
aforementioned FCM simulation, the polynomial degree of
the shape functions p and the number of voxels in each
direction are read from the user input file and are not
dependent on the visualisation. The computational domain is
kept fixed during the whole runtime of the simulation as the
time-consuming discretisation is done only at the beginning,
making the kernel convenient for interactive computing.

Driven by external forces f, a deformed solid is governed
by the well-known equations from static elasticity theory,
resulting in a linear equation system K⋅u = f, where K is
known as the stiffness matrix, u the displacement vector of all
vertices, and f the force vector applied to the system. The
stiffness matrix K is assembled from the element stiffness
matrices, referring to individual elements lying inside the
femur’s physical domain.

Described initialisation and meshing steps are followed by
an interactive computing loop, which consists of receiving
user updates, pre-processing steps, solving the
aforementioned system of equations, post-processing, and
finally sending results to the user (Fig. 5).

Concerning the system of equations, due to its poor
condition number sophisticated iterative solvers fail to be
efficiently deployed and special treatment which allows for
both the design of sophisticated solvers as well as for
advanced parallelisation strategies is required. Therefore, a
direct solver with hierarchical concepts, i. e. exploiting an
octree data structure based on a nested dissection of the 3D
domain (see Fig. 7) is used [13]. The main advantage here is
that when inserting the implant, the stiffness matrices of the
cells that experience change are updated locally and
reassembly step is done only for a modified part of the
system.

Fig. 5. Simulation process − execution flow. After receiving the data
necessary for defining the problem and setting up the p-FEM kernel, a system
of equations needs to be solved. The interactive computing loop consists of
the pre-processing phase, an efficient direct solver based on nested dissection
scheme where displacements of all the elements’ vertices are calculated, the
post processing phase, and finally returning computed stresses to the user’s
front-end for visualisation.

Despite the overall better performance of the solver in

comparison to other direct solvers, i. e. Gauss and relatives,
the current reassembling step which is computationally most
expensive is undoubtedly worth being interrupted or skipped
as soon as a surgeon on his interface changes actual settings.

C. Towards Interactive Computing – Interrupting the
Simulation
As already implied, in order to further improve the

proposed system towards an interactive simulation and
visualisation environment, we have integrated functionality
of our framework for instant interrupting the current
computation in case of an update. On this occasion, due to the
update, obtained stiffness matrices are supposed to be
assembled, step by step traversing an octree bottom-up, into
the global stiffness matrix. Afterwards, the solution for the
system of equations at root, i. e. zero, level of the octree is
done and all the solutions are recursively passed for each
node to the nodes one level lower in the hierarchy for their
own local solutions, as shown in Fig. 6. All the partial
solutions are finally assembled into the final solution vector.
The described algorithm, as presented in [13] has shown
excellent scalability values in case of hybrid parallelisation
[8].

Fig. 6. Nested dissection solver. Dashed arrows indicate the solution
sequence and the solid ones the assembly. For instance, in case of an
interrupt being caught while processing the filled node at the bottom of the
hierarchy, supposing the tree-like structure is being traversed in depth-first
manner, the processing of the nodes marked with the cross is skipped.

Therefore, our intention is that the most time consuming

phase, i. e. assembly, parallelised using shared or distributed
memory concepts or both is being interrupted. Here,
cyclically-repeating signals are used for frequent checks for
updates. If there is an indicator of the upcoming message
from the user side, this is recognised while processing one of
the nodes in the previously mentioned hierarchical data
structure and the simulation variables are set in a way which
ensures skipping the rest of the nodes, as shown in Fig. 6.
Thus, all the layers of the recursive assembly function call
return immediately, the solution steps are skipped as well,
and the new data is received at the beginning of the next step
of the interactive computing loop.

Fig. 7. Building a hierarchy of tasks based on nested dissection of the
rectangular domain (for the sake of simplicity 2D case is shown). Dissection
is done recursively and all the element stiffness matrices and load vectors are
placed in the leaves of the tree structure.

In addition to the guaranteed data values consistency

necessary for the correct program execution, mentioned at
the beginning of the Section 2, sufficient steps to prevent

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

310

potentially introduced severe memory leaks before the new
computation is started have to be taken. This is due to the
interrupts and their possible occurrence before the memory
allocated in the solver has been released. If assembly of
different parts of the ochre is being processed by separate
threads, i. e. the solver code is parallelized via Open MP,
unexceptionally in this test case, it is ensured that when a new
update is recognized by the thread catching a signal, all the
other threads become immediately and automatically aware
that they are supposed to skip the rest of their computations.
As soon as the assembly has been completed without an
interrupt, the stresses are sent back to the user process for
visual update. Although precious time has been saved by
skipping all the previous ones and calculating results only for
an actual setting, unavoidable delay of any visual feedback
especially for the higher p, i. e. higher than 4, is experienced
as already expected, since the time needed for a new
computation is dramatically increasing in case of increasing p.
Here, we profit from a hierarchical approach.

IV. HIERARCHICAL APPROACH FOR THE BONE
The hierarchical approach used in this test case is based on

the usage of several, chosen by the user, different polynomial
degrees for corresponding parallel processes (Fig. 8). The
voxels’ data as well as the data referring to user interaction is
being sent to all of them via MPI, and they can all start their
own computation, naturally, for lower p finishing faster than
for higher p. As soon as any of them is finished, the results
are sent to the front end and visualised.

What is accomplished in this way is that while the user’s
interplay with the settings is very intensive, he is getting not
the most accurate, nevertheless immediate feedback about the
effects of his changes, i. e. results for lower p, more
specifically p = 1 or p = 2, being able to see the more
accurate results in addition to this only as soon as he stops
interacting and lets the simulation finish one iteration in the
interactive computing loop for higher p values. As soon as
user interaction starts over again, the results for the lowest p
are immediately being visualised and the general impression
about the tendency can be instantly gained one more time,
switching afterwards gradually to higher levels of hierarchy
until either the user starts interacting again or the highest
accuracy is achieved, i. e. results for the highest hierarchy are
received (Fig. 9). The number of MPI program instances,
being executed for different p, i. e. hierarchy, can be chosen
by the user.

Fig. 8. Hierarchical approach – the communication pattern for the two chosen
hierarchies – for instance p = 2 and p = 6. The updates are being sent to both
of them, only the computation for p = 2 being able to finish and send back the

result until the next update has been received. The computation for p = 6 is
being interrupted and skipped all the time until the user stops interacting,
when it has a chance to finish and send back the stresses for visualisation.

Fig. 9. Transition from p = 6 to p = 1 as soon as the user starts performing
changes, i. e. changing the forces magnitude and direction, inserting an
implant and moving it, etc. and getting the result again for p = 6 as soon as the
interaction stops. In this way the user receives instantly feedback about the
stress distribution, getting the finer result only when he stops interacting.

V. RESULTS AND CONCLUSIONS
The starting point of our work was a computationally

efficient simulation and a sophisticated user interface with
visualisation module, both opening the door for real-time
interactive computing. The integration of our framework then
comes into play not only to make more suitable for this
purpose the way the data is communicated, but also to enable
interrupting the simulation immediately and getting instant
feedback ensued by any user interaction.

Evaluation of the performance on this particular test
scenario, where the simulation is executed on multi-core
architectures and connected to the visualisation front-end via
a network still proved that this is yet another test case where
the overhead caused by the framework itself is not
significant.

The tests have been done in the past also on other
multithreaded and distributed simulation test cases, where, as
Fig. 10 and Fig. 11 show, we also got promising results.

Fig. 10. Scenario with OpenMP parallelised Gauss-Seidel solver on a grid of
size 500 × 500 without signals invoked, with signals invoked, but without
any user interaction and with extremely intensive user interaction, i. e. each 5
milliseconds, shows excellent speedup results tested on 1, 2, and 4 cores.

In none of the test cases, even the one where the user
interaction was invoked in 5-millisecond intervals, which is
far more frequent than typically occurs in practice (the results
of the measurements are shown in Fig. 10), did the
integration of the framework significantly affect the overall
execution time.

In the future, we will concentrate on testing the framework

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

311

in case of distributed and massively parallel version of this
particular simulation. Load balancing techniques will be
applied in order to involve all the available processes during
the overall program runtime. This becomes especially
challenging for the tasks organised in the hierarchy, where
the number of processes involved is typically decreasing by
the factor of 2n on each level, where n is the dimension of the
space. Thus, a sophisticated optimisation technique for the
tasks with dependencies will be applied, which involves
various heuristics in order to balance the work among
processes in the optimal way.

Fig. 11. Excellent speedup of a distributed Jacobi solver tested for up to 64
processes on AMD Opteron 850 processors at 2.4 GHz, without the
integration of our framework and with it for different intervals in which
signals occur (1 and 0.5 milliseconds); overhead introduced by the
framework itself is negligible.

Also, the problem of data transmission for very high p will

be tackled for minimising the amount of data which is being
transferred in both directions.

REFERENCES
[1] J.D. Mulder, J.J. van Wijk, R. van Liere: A survey of computational

steering environments, Future Generation Computer Systems, 15(1).
1999, pp. 119−129.

[2] J. Knežević, J. Frisch, R.-P. Mundani, E. Rank: Interactive computing
framework for engineering applications, Journal of Computer Science,
7(5), 2011, pp. 591−599.

[3] A. Düster, Z. Parvizian, Z. Yang, E. Rank: The finite cell method for
three-dimensional problems of solid mechanics, in Proc. Computer
Methods in Applied Mechanics and Engineering, 2009,
pp. 3768−3782.

[4] C. Dick, R. Georgii, R. Burgkart, R. Westermann: Computational
steering for patient-specific implant planning in orthopedics, in Proc.
Visual Computing for Biomedicine, 2008, pp. 83−92.

[5] C. Dick, R. Georgii, R. Burgkart, R. Westermann: Stress tensor field
visualisation for implant planning in orthopedics, IEEE Transactions
on Visualization and Computer Graphics, 15(6), 2009, pp. 1399−1406.

[6] Z. Yang, C. Dick, A. Düster, M. Ruess, R. Westermann, E. Rank,
“Finite Cell Method with Fast Integration – An Efficient and Accurate
analysis method for CT/MRI Derived Models,” in Proc. ECCM, 2010.

[7] J. Knežević, R.-P. Mundani: Interactive computing for engineering
applications, in Workshop Proc. 22nd Forum Bauinformatik, 2010,
pp. 137−144.

[8] R.-P. Mundani, A. Düster, J. Knežević, A. Niggl, E. Rank: Dynamic
load balancing strategies for hierarchical p-FEM solvers, in Recent

Advances in Parallel Virtual Machine and Message Passing Interface,
LNCS 5759, Springer, 2009, pp. 305−312.

[9] J. Vetter, K. Schwan: High performance computational steering of
physical simulations, in Proc. 11th Int. Parallel Processing Symposium,
1997.

[10] R. Nicolas, A. Esnard, O. Coulaud: Toward a computational steering
environment for legacy coupled simulations, in Proc. Sixth Int.
Symposium on Parallel and Distributed Computing, 2007.

[11] D. Jenz, M. Bernreuther: The computational steering framework
steereo, in Proc. of PARA 2010 Conf.: State of the art in Scientific and
Parallel Computing, 2010.

[12] K. Rycerz, M. Bubak, P. Sloot, V. Getov: Problem solving environment
for distributed interactive applications, in Proc. CoreGRID Integration
Workshop, 2006, pp. 129−140.

[13] R.-P. Mundani, H.-J. Bungartz, E. Rank, A. Niggl, R. Romberg,
Extending the p-version of finite elements by an octree-based
hierarchy,” in Domain Decomposition Methods in Science and
Engineering XVI, LNCSE 55, Springer, 2007, pp. 699−706.

Jovana Knežević was born in Užice, Serbia. In 2009,
she has obtained M.Sc. degree in computer science at
the Faculty of Mathematics, University of Belgrade.
Since 2009, she is doing her PhD in computer science
at the Chair for Computation in Engineering,
Technische Universität München. Her main research
interest covers interactive computing with the special
focus on computational steering, parallelisation, and
high-performance computing.

Ralf-Peter Mundani was born in Munich, Germany.
In 2000, he obtained his diploma in computer science
at the Faculty of Informatics, Technische Universität
München (TUM), in 2005 his PhD at the Institute of
Parallel and Distributed Systems, University of
Stuttgart.

Since 2007, he has a post-doctoral position at the
Chair for Computation in Engineering, Technische
Universität München (TUM) and he is managing

director of the Center for Simulation Technology in Engineering, part of
TUM’s International Graduate School of Science and Engineering.

Ernst Rank was born in Traunstein, Germany. In
1980, he obtained his diploma in mathematics at the
Faculty of Mathematics,
Ludwig-Maximilians-University Munich, in 1985 his
PhD at the Faculty of Civil Engineering and
Surveying, Technische Universität München.
In 1990, he was appointed professor for the Chair of
Numerical Methods and Data Processing at

University of Dortmund
Germany, since 1997 he is heading the Chair for Computation in

Engineering, Technische Universität München (TUM), and since 2009 he is
also director of TUM’s Graduate School. From 2002−2008 he was vice
president of TUM.

International Journal of Modeling and Optimization, Vol. 1, No. 4, October 2011

312

	53-S043

