

Abstract—With the rapid development of the graphics

processing unit (GPU), a recent GPU offers incredible
resources for general purpose computing. We apply this
technology to Monte Carlo simulations of the 2D and 3D lattice
Ising models. By implementing the checkerboard algorithm,
results are obtained up to 54, 62 and 68 times faster on the
GPU than on a current CPU core for the honeycomb, square
and triangular lattice respectively. For the 3D situation,
however, the speedup is impacted greatly by the threads
assignments on the GPU, the fastest one gives a speedup of 179,
at the same time, the results of those simulations are consistent
with the theoretical results for the 2D Ising model and previous
results for the 3D Ising model.

Index Terms—GPU, CUDA, Ising model, monte carlo

I. INTRODUCTION
The Ising model [1], which is named after Ising, is a

mathematical model of ferromagnetism in statistical
mechanics. It was introduced to explain the phase transition
of ferromagnetic material near the critical point Kc.
According to Ising's research, no phase transition occurs in
one dimensional spin chain. In the case of zero magnetic
field, the Ising model on a square lattice was given a
complete analytic description by Onsager in 1944 [2], the
critical point 2/)21ln(+=cK . In the case of honeycomb
and triangular lattices, the critical points are 2/)32ln(+
and 4/3ln respectively [3]. However, there is no
theoretical results for the 3D Ising model, the critical point
Kc =0.2216544(3) [4] of the Ising model on a cubic lattice
can be obtained by the computer simulations in combination
with finite size scaling techniques. The Ising model, because
of its rich content, became popular not only in physics but
also in various interdisciplinary fields, i.e. biological
systems [5], social sciences [6], biological physics [7],
econophysics [8]. In the past 40 years, numerical
simulations, represented by Monte Carlo (MC) method,
have been used in the research of the Ising model, the
performance of the MC method while dealing with large
systems, however, is not satisfactory as lots of time is
needed.

In the last few years, benefitting from the rapid
development of the graphics processing unit (GPU), GPU

Manuscript received November 28, 2011; revised December 30, 2011.
Xing Lu, Jing Cai and Peidong Cui are postgraduate students with the

Department of Physics, Jinan University, Guangzhou, P. R. China (e-mail:
landstar@126.com, caijing164@163.com).

Wei Zhang is working as Assistance Professor with the Department of
Physics, Jinan University, Guangzhou, P. R. China(email:
twzhang@jnu.edu.cn).

* Corresponding author (Wei Zhang, email: twzhang@jnu.edu.cn)

computing has cought many scientists and engineers’ eyes
not only with its’ incredible acceleration in various fields,
but also with the improvement of GPU programming. In
acceleration, GPU technology has gained a lot of
high-performance computing applications and obtained
encouraging results in many fields including molecular
simulation [9], fluid dynamics [10], option pricing [11] and
many other fields. In programming, GPU programming is
much easier than ever before [12,13] as the emergence of
new programming approach such as OpenCL [14], CUDA
[15].

In this paper, some key facts of the GPU device
architecture are briefly summarized in section II, the random
number generation of this work is introduced in section III.
The accelerations of GPU for Monte Carlo simulations of
Ising model on various lattices are studied in section IV. The
impact of thread assignment on the GPU performance is
shown in section V.

II. GPU DEVICE ARCHITECTURE
A GPU device consists of a set of multiprocessors and a

large amount of global memory as illustrated in Fig. 1, each
multiprocessor consists of a number of processors, a set of
32-bit registers, a shared memory, a read-only constant
memory and texture memory and has a Single Instruction,
Multiple Data architecture (SIMD): At any given clock
cycle, each processor of the multiprocessor executes the
same instruction, but operates on different data.

Fig.1 Device architecture of GPU.

In the CUDA environment [15], a CPU is used as a host

while a GPU treated as a coprocessor to the host CPU is
viewed as a parallel computing device. The GPU device is
able to execute a very high number of threads in parallel, a
thread block is a batch of threads which cooperate together
and can share data through shared memory and synchronize
their execution to coordinate memory access, a grid of

Accelerating the Simulations of the Ising Model by the
GPU under the CUDA Environment

Xing Lu, Jing Cai, Peidong Cui, and Wei Zhang

International Journal of Modeling and Optimization, Vol. 1, No. 5, December 2011

426

blocks is a group of blocks with the same dimensionality
and size and executing the same kernel, the communication
and data exchange between blocks can be realized through
global memory. As a result, each thread has a set of label to
define it’s id. The label is organized as (threadIdx.x,
threadIdx.y, threadIdx.z) and (blockIdx.x, blockIdx.y,
blockIdx.z) defined as dim3 type under CUDA. For 2D Ising
models, only blockIdx.x and threadIdx.x are used to map the
y and x dimensions, while the 3D model uses blockIdx.x,
blockIdx.y and threadIdx.x mapping the x, y and z
dimensions. The thread assignments have important impacts
on the GPU performance.

The device of this article is Tesla C1060, the key facts
and properties of Tesla C1060 is listed in TABLE 1, the host
CPU is Intel(R) Core(TM) i7 920 @ 2.67GHz.

TABLE 1 KEY FACTS AND PROPERTIES OF TESLA C1060

 Tesla C1060
Total amount of global memory 4 GB
Number of multiprocessors 30
Number of cores 240
Constant memory 64 KB
Shared memory per block 16 KB
Warp size 32
Clock rate 1.30 GHz

III. RANDOM NUMBER GENERATOR
As a large number of random numbers will be used in the

Monte Carlo method, the efficiency of the random number
generator has a great impact on the algorithm efficiency. In
order to get a high-performance algorithm, an array of linear
congruential random number generators (LCRNGs) is
applied to generate pseudo random numbers [16]. A single
random number generator provides the random numbers for
thread j. A sequence of random numbers for the jth thread
xi,j is generated by the recurrence relation

mcxax mod)(+⋅=+ ji,j1,i (1)

where a, c and m are integer coefficients. An appropriate
choice of these coefficients is responsible for the quality of
the produced random numbers. We use a=1664525 and
c=1013904223 as suggested, e.g., in [17]. As by
construction results on a 32-bit architecture are truncated to
the endmost 32 bits, the parameter of the modulo operation
m is set to 232. As a result, the LCRNG can be used to
generate random numbers xi,j in the interval (-231, 231). As
the linear congruential random number generators are used
in parallel, each LCRNG j of this array is initialized by a
random number obtained by a further LCRNG through

mxx mod16807 1j,0j,0 −⋅=
 (2)

with a initial value x0,0. In order to achieve higher
efficiency, the generation and access of random numbers are
carried out in the shared memory.

IV. GPU PERFORMANCE ON THE ISING MODEL
The spins of the Ising model is located on the sites of the

lattice and can only value +1 and -1 indicate spin up and

spin down respectively. The Hamiltonian H of this model is
given by

∑∑ −−=
>< i

i
ji,

jiH SHSSJ (3)

where J indicates the interaction constant, <i,j> indicates the
nearest spin pairs, Si =±1 represents a spin at site i and H
denotes the external magnetic field. The Metropolis
probablity [18] of flip of spin Si in the case zero magnetic
field is defined as

],1min[)(JKeSSp H/
ii

Δ⋅−=−→ (4)
where K=J/(kBT) is the coupling constant, kB is the
Boltzmann constant, J and kB set to 1 for facilitation,
periodic boundary conditions are used. Such that the
updating decision can be drawn solely upon examining the
states of spin Si and its nearest neighbors. Thus, the
simulation of this model can be made local and highly
parallel by dividing the spin field into many subcells and
applying the checkerboard algorithm.

As it is not allowed to read and write a same memory unit
simultaneously, simulating all the spins at a time is not
allowed. As the GPU device is able to execute a very high
number of threads in parallel, a certain amount of threads is
implemented, each thread simulate one subcell, the
efficiency of the algorithm depends on the number of
threads executing in parallel, as a result, the division of the
spin field is very important for the performance of the
algorithm. The system size of the Ising model is denoted by
L and the number of the subcells in each dimension is
denoted by Block size.

(a) Square lattice (b) Honeycomb lattice

(c) Triangular lattice (b) Cubic lattice
Fig. 2 Schematic visualization of the implementations of the Ising

model on various lattices on GPU: the areas enclosed by dotted lines are
subcells simulated in parallel. The spins in the boxes with the same color

are operated in parallel.

The implementations of the Ising model on various
lattices on GPU are shown in Fig. 2. For a square lattice
with system size L=4, as shown in Fig. 2(a), the spin field is
divided into 2×2 square subcells with 2×2 spins in each
subcell [19], Block size=L/2=2, GPU executes 2 thread
blocks with 2 threads, each thread operates 2 spins on the
diagonal of the subcell, as the synchronization is only
possible between threads within a block, the only way to
make sure all the block has finished the simulation is
terminating the GPU kernel function, as a result, when the
opera tion is finished, GPU needs to execute another 2×2
threads to operate the spins on the other diagonal. For a
honeycomb lattice of L=2 with 2×4 sites, as shown in Fig.
2(b), the spin field is divided into 2×2 subcells with 2 spins

International Journal of Modeling and Optimization, Vol. 1, No. 5, December 2011

427

in each subcell, that means Block size=L=2, GPU executes 2
thread blocks with 2 threads, each thread operates one spin
of the same location in the subcell then GPU needs to
execute another 2×2 threads to simulate the other spin in the
subcells. For a Triangular lattices of L=4 with L×L sites, as
shown in Fig. 2(c), the spin field is divided into 2×2 subcells
with 2×2 spins, GPU executes 2 thread blocks with 2
threads, different from the square lattice, each thread can
only simulate one spin of the subcell at one time and needs
to run 4 times to finish the simulation. For a cubic lattice of
L=4 with 4×4×4 sites, as shown in Fig. 2(d), the spin field is
divided into 2×2×2 subcells [19], GPU executes a 2D grid
with 2×2 thread blocks and each block contains 2 threads,
then, each thread operates 4 spins in the subcell, after that,
GPU executes another 2×2×2 threads to simulate the other
spins of the subcell.

The speedups (acceleration factors [19]) of GPU for the
Ising model on these lattices are shown in Fig.3. As shown
in Fig. 3, the speedup increases with the Block size, as
shown in Fig. 3(a), the speedup of a square lattice Ising
model with Block size=512 is 63, at the same Block size, as
shown in Fig. 3(b) and 3(c), the speedup of honeycomb and
triangular lattice Ising model are 55 and 69 respectively,
more strikingly, the speedup of 3D Ising model with Block
size =384 can reach up to 142(details of 3D speedup are
dicussed in section V).

(a) Square lattice

(b) Honeycomb lattice

(c) Triangular lattice

 (d) Cubic lattice

Fig. 3 Processing time and speedup of GPU compared with CPU: The
processing time of CPU version and GPU version increases as the Block
size increased, while the increase rate of GPU version is lower than CPU

version, as a result, the speedup grows as the Block size increased.
In order to verify the GPU implementation, the critical

point of Ising model is used. To obtain the critical point, we
can use finite size scaling and Binder cumulant [20], which
is given by

><
><= 4

22

M),(
),(),(

LKM
LKMLKQ (5)

where M denotes the magnetization of the Ising model and
<…> means the average. According to finite size scaling
theory, the Binder cumulant QM becomes independent of
system size at the critical point, which means the crossover
point of the Binder cumulants with various system sizes is
the critical point. The Binder cumulant on these lattices is
shown in Fig. 4.

The critical point of the 2D and 3D Ising model on Fig. 4
is consistent with the theoretical results for the 2D Ising
model and previous simulation results for the 3D Ising
model mentioned in section 1.

International Journal of Modeling and Optimization, Vol. 1, No. 5, December 2011

428

(a) Square lattice

(b) Honeycomb lattice

(c) Triangular lattice

 (d) Cubic lattice

Fig. 4. QM vs K of various system sizes on various lattices. the
intersections The critical points on various lattices are denoted by the black

dotted lines around which are the intersections of the QM of various
lattices.

V. IMPACT OF THREAD ASSIGNMENT FOR 3D ISING MDOEL
As mentioned in section II, thread assignment has

important impact on the GPU’s performance, some details
will be discussed in this section.

The thread assignments have little impact on the 2D Ising
models, while there are great differences on 3D situation
between different assignments. As shown in Fig. 5. As
shown in Fig. 1, the cuboid with 2×2×2 spins is labeled by
(x, y, z), we apply a 3D thread structure formed by a 2D grid
and 1D block, for a system with N=L×L×L spins, the size
of block and grid in each dimension is defined as Block size
= L/2. The location number of the 8 spins in the cuboid (x, y,
z) are defined as follows:

(6)

(a) Split of a 3D spin field

(b) a cuboid with 8 spins

Fig. 5. Schematic diagram of the 3D ferromagnetic cubic lattice Ising
model implementation on a GPU for L = 4. The 3D

spin field is divided into cuboids of 2×2×2 spins assigned to 8 threads on
the GPU, 2 threads form a block and the grid

consists of 4 blocks with the structure of 2×2 square. The x, y, z axis used
to describe the threads assignment on the GPU.

Each thread with a unique 3d label marked (blockIdx.x,

blockIdx.y, threadIdx.x) under the CUDA environment
operates a certain cuboid labeled (x, y, z), however, as each
thread simulate a cuboid, the threads assignment is varied,
six simplest assignments listed in TABLE 2 are studied in

International Journal of Modeling and Optimization, Vol. 1, No. 5, December 2011

429

this work.

TABLE 2 THE ASSIGNMENTS OF THREADS
Code x y z

I threadIdx.x blockIdx.x blockIdx.y
II threadIdx.x blockIdx.y blockIdx.x
III blockIdx.x threadIdx.x blockIdx.y
IV blockIdx.y threadIdx.x blockIdx.x
V blockIdx.x blockIdx.y threadIdx.x
VI blockIdx.y blockIdx.x threadIdx.x

The performances of these codes are expected to be same,

however, they differs each other greatly as shown in Fig. 6.

(a) Processing time of different codes and CPU versus Block Size.

(b). The speedups of different codes versus Block Size

Fig. 6. Performance of different codes with various system sizes.

The efficiency of these codes are studied for various
system size L ranging from 4 to 768, that is, Block size from
2 to 384. Larger systems are not simulated for the limit of
the global memory on Tesla C1060. The processing time of
different codes for 100 sweeps through the lattice is shown
in Fig. 6(a). Further more, the speedups of these codes are
shown in Fig. 6(b). When running these codes, the same
number of threads are executing in parallel, the only
difference between these codes is the digits multiplied by
threadIdx.x, blockIdx.x and blockIdx.y. According to FIG. 6
and TABLE II, if threadIdx.x multiplied by the largest digit,
that is, z assigned to threadIdx.x, the performance will be
very slow, the assignment of blockIdx.x and blockIdx.y
doesn’t have much influence to the performance of the GPU
(lines of code I and II), if we indicate y as threadIdx.x,
blockIdx.x multiplied by a small digit will obtain a higher
performance than multiplied with a large digit (lines of code
III and IV), whatever, the performance of these codes is
better than the form ones (I and II), for the fastest two codes
V and VI, threadIdx.x multiplied by smallest digit 2,

blockIdx.x multiplied by a small number will help us to gain
a better performance, it is obvious that code VI has a better
efficiency than code V. It can be guessed that the efficiency
of the GPU is closely related with the digits multiplied by
the thread label (blockIdx.y, blockIdx.x, threadIdx.x),
smallest to threadIdx.x, later a larger number to blockIdx.x,
the largest to blockIdx.y will behave best.

VI. SUMMARIES
Compaired with the CPU version algorithm, applying

GPU as a data-parallel coprocessor of CPU has a great
advantage on saving computing time. The speedup of GPU
for Monte Carlo simulations of the Ising model is related to
the system size(Block size), as the number of threads
simulating is equal to the number of subcells, the larger the
system is, the lager the speedup is. In the 2D situation, the
speedups of a system with a Block size of 512 are 55, 63 and
69 for the honeycomb, square and triangular lattices
respectively, which implicits that the speedup do not have
much to do with the coordination numbers of lattices. While
in the 3D case, it is more complex than 2D ones, the
speedup of the GPU is also related to the thread assignment,
different codes behave differently, the best code gain a
speedup of 179 while the worst code does not show any
speedup. As Metropolis algorithm does not efficient enough
near the critical point as the critical slowing down happens,
our further work may facous on the GPU based
single-cluster algorithm and the hybrid algorithm consists of
the GPU based Metropolis and CPU based wolff algorithm.

ACKNOWLEDGMENT
This paper is supported by “the National Natural Science

Foundation of China”, the project NO. 1047003 and NO.
11005048 and “the Fundamental Research Funds for the
Central University”, the project NO. 216113144. Thank H.
C. Wong, U. H. Wong from Macao University of Science
and Technology for valuable discussion.

REFERENCES
[1] E. Ising, Beitrag zur theorie des ferromagnetismus, Z. Phys., 31, 1925,

PP: 253-258.
[2] L. Onsager, Crystal statistics. I: A two-dimensional model with an

order-disorder transition, Phys. Rev., 65 (3-4), 1944, PP: 117-149.
[3] R. J. Baxter, Exactly Solved Models in Statistical Mechanics,

Academic Press, London, 1982.
[4] K. Binder and E. Luijten, Monte carlo tests of renormalization-group

predictions for critical phenomena in Ising models, Phys. Rep.,
2001344, 2001, PP: 179-253.

[5] R. Schlicht and Y. Iwasa, Forest gap dynamics and the Ising model, J.
Theor. Biol, 230 (1), 2004, PP: 65-75.

[6] D. O. Cajueiro, Enforcing social behavior in an Ising model with
complex neighborhoods, Physica A, 390 (9), 2011, PP: 1695-1703.

[7] A. Imparato, A. Pelizzola, and M. Zamparo, Equilibrium Properties
and Force-Driven Unfolding Pathways of RNA Molecules, Phys. Rev.
Lett., 103, 2009, PP:188102-188105.

[8] A. Krawiecki, “Microscopic spin model for the stock market with
attractor bubbling on scale-free networks,” Journal of Economic
Interaction and Coordination, 4 (2), 2009, PP: 213-220.

[9] J. E. Stone; J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G.
Trabuco, and K. Schulten, “Accelerating molecular modeling
applications with graphics processors,” J. Comput. Chem., 28(16),
2007, PP: 2618-2640.

[10] J. Myre, S. D. C. Walsh, D. Lilja, and M. O. Saar, “Performance
analysis of single-phase, multiphase, and multicomponent
lattice-Boltzmann fluid flow simulations on GPU clusters,”

International Journal of Modeling and Optimization, Vol. 1, No. 5, December 2011

430

Concurrency and Computation: Practice and Experience, 23 (4),
2011, PP: 332-350.

[11] B. W. Zhang and C. W. Oosterlee, “Option Pricing with COS method
on Graphics Processing Units,” IEEE International Symposium on
Parallel Distributed Processing, IPDPS, 2009, PP: 1-8.

[12] R. J. Rost, “OpenGL Shading Language, second ed., Addison-Wesley,
Longman,” Amsterdam, 2006.

[13] R. Fernando and M. J. Kilgard, “The Cg Tutorial: The Definitive
Guide to Programmable Real-time Graphics,” Addison-Wesley,
Longman, Amsterdam, 2003.

[14] NVIDIA Corporation, NVIDIA OpenCL JumpStart Guide, version
0.9, 2009.

[15] NVIDIA Corporation, NVIDIA CUDA C Programming Guide,
version 3.1.1, 2010.

[16] J. J. Schneider and S. Kirkpatrick, Stochastic Optimization, Springer,
Berlin, 2006.

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, Cambridge
University Press, Cambridge, 2007.

[18] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, “Equation of state calculations by fast computing
machines,” J. Chem. Phys., 21, 1953, PP: 1087.

[19] T. Preis, P. Virnau, W. Paul, and J. J. Schneider, “GPU accelerated
Monte Carlo simulation of the 2D and 3D Ising model,” J. Comput.
Phys., 228, 2009, PP: 4468-4477.

[20] K. Binder, “Finite size scaling analysis of Ising model block
distribution functions,” Z. Phys. B, 43, 1981, PP: 119-140.

International Journal of Modeling and Optimization, Vol. 1, No. 5, December 2011

431

