
  
Abstract—With the rapid development of the graphics 

processing unit (GPU), a recent GPU offers incredible 
resources for general purpose computing. We apply this 
technology to Monte Carlo simulations of the 2D and 3D lattice 
Ising models. By implementing the checkerboard algorithm, 
results are obtained up to 54, 62 and 68 times faster on the 
GPU than on a current CPU core for the honeycomb, square 
and triangular lattice respectively. For the 3D situation, 
however, the speedup is impacted greatly by the threads 
assignments on the GPU, the fastest one gives a speedup of 179, 
at the same time, the results of those simulations are consistent 
with the theoretical results for the 2D Ising model and previous 
results for the 3D Ising model. 
 

Index Terms—GPU, CUDA, Ising model, monte carlo  
 

I. INTRODUCTION 
The Ising model [1], which is named after Ising, is a 

mathematical model of ferromagnetism in statistical 
mechanics. It was introduced to explain the phase transition 
of ferromagnetic material near the critical point Kc. 
According to Ising's research, no phase transition occurs in 
one dimensional spin chain. In the case of zero magnetic 
field, the Ising model on a square lattice was given a 
complete analytic description by Onsager in 1944 [2], the 
critical point 2/)21ln( +=cK . In the case of honeycomb 
and triangular lattices, the critical points are 2/)32ln( +  
and 4/3ln  respectively [3]. However, there is no 
theoretical results for the 3D Ising model, the critical point 
Kc =0.2216544(3) [4] of the Ising model on a cubic lattice 
can be obtained by the computer simulations in combination 
with finite size scaling techniques. The Ising model, because 
of its rich content, became popular not only in physics but 
also in various interdisciplinary fields, i.e. biological 
systems [5], social sciences [6], biological physics [7], 
econophysics [8]. In the past 40 years, numerical 
simulations, represented by Monte Carlo (MC) method, 
have been used in the research of the Ising model, the 
performance of the MC method while dealing with large 
systems, however, is not satisfactory as lots of time is 
needed. 

In the last few years, benefitting from the rapid 
development of the graphics processing unit (GPU), GPU 
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computing has cought many scientists and engineers’ eyes 
not only with its’ incredible acceleration in various fields, 
but also with the improvement of GPU programming. In 
acceleration, GPU technology has gained a lot of 
high-performance computing applications and obtained 
encouraging results in many fields including molecular 
simulation [9], fluid dynamics [10], option pricing [11] and 
many other fields. In programming, GPU programming is 
much easier than ever before [12,13] as the emergence of 
new programming approach such as OpenCL [14], CUDA 
[15]. 

In this paper, some key facts of the GPU device 
architecture are briefly summarized in section II, the random 
number generation of this work is introduced in section III. 
The accelerations of GPU for Monte Carlo simulations of 
Ising model on various lattices are studied in section IV. The 
impact of thread assignment on the GPU performance is 
shown in section V. 
 

II. GPU DEVICE ARCHITECTURE 
A GPU device consists of a set of multiprocessors and a 

large amount of global memory as illustrated in Fig. 1, each 
multiprocessor consists of a number of processors, a set of 
32-bit registers, a shared memory, a read-only constant 
memory and texture memory and has a Single Instruction, 
Multiple Data architecture (SIMD): At any given clock 
cycle, each processor of the multiprocessor executes the 
same instruction, but operates on different data. 

 
Fig.1 Device architecture of GPU. 

 
In the CUDA environment [15], a CPU is used as a host 

while a GPU treated as a coprocessor to the host CPU is 
viewed as a parallel computing device. The GPU device is 
able to execute a very high number of threads in parallel, a 
thread block is a batch of threads which cooperate together 
and can share data through shared memory and synchronize 
their execution to coordinate memory access, a grid of 
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blocks is a group of blocks with the same dimensionality 
and size and executing the same kernel, the communication 
and data exchange between blocks can be realized through 
global memory. As a result, each thread has a set of label to 
define it’s id. The label is organized as (threadIdx.x, 
threadIdx.y, threadIdx.z) and (blockIdx.x, blockIdx.y, 
blockIdx.z) defined as dim3 type under CUDA. For 2D Ising 
models, only blockIdx.x and threadIdx.x are used to map the 
y and x dimensions, while the 3D model uses blockIdx.x, 
blockIdx.y and threadIdx.x mapping the x, y and z 
dimensions. The thread assignments have important impacts 
on the GPU performance. 

The device of this article is Tesla C1060, the key facts 
and properties of Tesla C1060 is listed in TABLE 1, the host 
CPU is Intel(R) Core(TM) i7 920 @ 2.67GHz. 

 
TABLE 1 KEY FACTS AND PROPERTIES OF TESLA C1060 

 Tesla C1060 
Total amount of global memory 4 GB 
Number of multiprocessors 30 
Number of cores     240 
Constant memory 64 KB 
Shared memory per block 16 KB 
Warp size 32 
Clock rate 1.30 GHz 

 

III. RANDOM NUMBER GENERATOR 
As a large number of random numbers will be used in the 

Monte Carlo method, the efficiency of the random number 
generator has a great impact on the algorithm efficiency. In 
order to get a high-performance algorithm, an array of linear 
congruential random number generators (LCRNGs) is 
applied to generate pseudo random numbers [16]. A single 
random number generator provides the random numbers for 
thread j. A sequence of random numbers for the jth thread 
xi,j is generated by the recurrence relation 

mcxax mod)( +⋅=+ ji,j1,i             (1) 

where a, c and m are integer coefficients. An appropriate 
choice of these coefficients is responsible for the quality of 
the produced random numbers. We use a=1664525 and 
c=1013904223 as suggested, e.g., in [17]. As by 
construction results on a 32-bit architecture are truncated to 
the endmost 32 bits, the parameter of the modulo operation 
m is set to 232. As a result, the LCRNG can be used to 
generate random numbers xi,j  in the interval (-231, 231). As 
the linear congruential random number generators are used 
in parallel, each LCRNG j of this array is initialized by a 
random number obtained by a further LCRNG through 

mxx mod16807 1j,0j,0 −⋅=
            (2) 

with a initial value x0,0. In order to achieve higher 
efficiency, the generation and access of random numbers are 
carried out in the shared memory. 

 

IV. GPU PERFORMANCE ON THE ISING MODEL 
The spins of the Ising model is located on the sites of the 

lattice and can only value +1 and -1 indicate spin up and 

spin down respectively. The Hamiltonian H of this model is 
given by  

∑∑ −−=
>< i

i
ji,

jiH SHSSJ     (3) 

where J indicates the interaction constant, <i,j> indicates the 
nearest spin pairs, Si =±1 represents a spin at site i and H 
denotes the external magnetic field. The Metropolis 
probablity [18] of flip of spin Si in the case zero magnetic 
field is defined as 

],1min[)( JKeSSp H/
ii

Δ⋅−=−→    (4) 
where K=J/(kBT) is the coupling constant, kB is the 
Boltzmann constant, J and kB set to 1 for facilitation, 
periodic boundary conditions are used. Such that the 
updating decision can be drawn solely upon examining the 
states of spin Si and its nearest neighbors. Thus, the 
simulation of this model can be made local and highly 
parallel by dividing the spin field into many subcells and 
applying the checkerboard algorithm. 

As it is not allowed to read and write a same memory unit 
simultaneously, simulating all the spins at a time is not 
allowed. As the GPU device is able to execute a very high 
number of threads in parallel, a certain amount of threads is 
implemented, each thread simulate one subcell, the 
efficiency of the algorithm depends on the number of 
threads executing in parallel, as a result, the division of the 
spin field is very important for the performance of the 
algorithm. The system size of the Ising model is denoted by 
L and the number of the subcells in each dimension is 
denoted by Block size.  

         
(a) Square lattice               (b) Honeycomb lattice 

 

      
(c) Triangular lattice            (b) Cubic lattice 
Fig. 2 Schematic visualization of the implementations of the Ising 

model on various lattices on GPU: the areas enclosed by dotted lines are 
subcells  simulated in parallel. The spins in the boxes with the same color 

are operated in parallel. 
 

The implementations of the Ising model on various 
lattices on GPU are shown in Fig. 2. For a square lattice 
with system size L=4, as shown in Fig. 2(a), the spin field is 
divided into 2×2 square subcells with 2×2 spins in each 
subcell [19], Block size=L/2=2, GPU executes 2 thread 
blocks with 2 threads, each thread operates 2 spins on the 
diagonal of the subcell, as the synchronization is only 
possible between threads within a block, the only way to 
make sure all the block has finished the simulation is 
terminating the GPU kernel function, as a result, when the 
opera tion is finished, GPU needs to execute another 2×2 
threads to operate the spins on the other diagonal. For a 
honeycomb lattice of L=2 with 2×4 sites, as shown in Fig. 
2(b), the spin field is divided into 2×2 subcells with 2 spins 
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in each subcell, that means Block size=L=2, GPU executes 2 
thread blocks with 2 threads, each thread operates one spin 
of the same location in the subcell then GPU needs to 
execute another 2×2 threads to simulate the other spin in the 
subcells. For a Triangular lattices of L=4 with L×L sites, as 
shown in Fig. 2(c), the spin field is divided into 2×2 subcells 
with 2×2 spins, GPU executes 2 thread blocks with 2 
threads, different from the square lattice, each thread can 
only simulate one spin of the subcell at one time and needs 
to run 4 times to finish the simulation. For a cubic lattice of 
L=4 with 4×4×4 sites, as shown in Fig. 2(d), the spin field is 
divided into 2×2×2 subcells [19], GPU executes a 2D grid 
with 2×2 thread blocks and each block contains 2 threads, 
then, each thread operates 4 spins in the subcell, after that, 
GPU executes another 2×2×2 threads to simulate the other 
spins of the subcell.  

The speedups (acceleration factors [19]) of GPU for the 
Ising model on these lattices are shown in Fig.3. As shown 
in Fig. 3, the speedup increases with the Block size,  as 
shown in Fig. 3(a), the speedup of a square lattice Ising 
model with Block size=512 is 63, at the same Block size, as 
shown in Fig. 3(b) and 3(c), the speedup of honeycomb and 
triangular lattice Ising model are 55 and 69 respectively, 
more strikingly, the speedup of 3D Ising model with Block 
size =384 can reach up to 142(details of 3D speedup are 
dicussed in section V). 

 
(a) Square lattice 

 
(b) Honeycomb lattice 

 
(c) Triangular lattice 

 
 (d) Cubic lattice 

Fig. 3 Processing time and speedup of GPU compared with CPU: The 
processing time of CPU version and GPU version increases as the Block 
size increased, while the increase rate of GPU version is lower than CPU 

version, as a result, the speedup grows as the Block size increased. 
In order to verify the GPU implementation, the critical 

point of Ising model is used. To obtain the critical point, we 
can use finite size scaling and Binder cumulant [20], which 
is given by 

><
><= 4

22

M ),(
),(),(

LKM
LKMLKQ    (5) 

where M denotes the magnetization of the Ising model and 
<…> means the average. According to finite size scaling 
theory, the Binder cumulant QM becomes independent of 
system size at the critical point, which means the crossover 
point of the Binder cumulants with various system sizes is 
the critical point. The Binder cumulant on these lattices is 
shown in Fig. 4. 

The critical point of the 2D and 3D Ising model on Fig. 4 
is consistent with the theoretical results for the 2D Ising 
model and previous simulation results for the 3D Ising 
model mentioned in section 1. 
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(a) Square lattice 

 
(b) Honeycomb lattice 

 
(c) Triangular lattice 

 
 (d) Cubic lattice 

Fig. 4. QM vs K of various system sizes on various lattices. the 
intersections The critical points on various lattices are denoted by the black 

dotted lines around which are the intersections of the QM of various 
lattices. 

V. IMPACT OF THREAD ASSIGNMENT FOR 3D ISING MDOEL 
As mentioned in section II, thread assignment has 

important impact on the GPU’s performance, some details 
will be discussed in this section. 

The thread assignments have little impact on the 2D Ising 
models, while there are great differences on 3D situation 
between different assignments. As shown in Fig. 5. As 
shown in Fig. 1, the cuboid with 2×2×2 spins is labeled by 
(x, y, z), we apply a 3D thread structure formed by a 2D grid 
and 1D block, for a system with N=L×L×L spins, the size 
of block and grid in each dimension is defined as Block size 
= L/2. The location number of the 8 spins in the cuboid (x, y, 
z) are defined as follows: 

 

(6) 
 

 
(a) Split of a 3D spin field 

 

 
(b) a cuboid with 8 spins 

Fig. 5. Schematic diagram of the 3D ferromagnetic cubic lattice Ising 
model implementation on a GPU for L = 4. The 3D 

spin field is divided into cuboids of 2×2×2 spins assigned to 8 threads on 
the GPU, 2 threads form a block and the grid 

consists of 4 blocks with the structure of 2×2 square. The x, y, z axis used 
to describe the threads assignment on the GPU. 

 
Each thread with a unique 3d label marked (blockIdx.x, 

blockIdx.y, threadIdx.x) under the CUDA environment 
operates a certain cuboid labeled (x, y, z), however, as each 
thread simulate a cuboid, the threads assignment is varied, 
six simplest assignments listed in TABLE 2 are studied in 
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this work. 
 

TABLE 2 THE ASSIGNMENTS OF THREADS  
Code x y z 

I threadIdx.x blockIdx.x blockIdx.y
II threadIdx.x blockIdx.y blockIdx.x
III blockIdx.x threadIdx.x blockIdx.y
IV blockIdx.y threadIdx.x blockIdx.x
V blockIdx.x blockIdx.y threadIdx.x
VI blockIdx.y blockIdx.x threadIdx.x

 
The performances of these codes are expected to be same, 

however, they differs each other greatly as shown in Fig. 6. 
 

 
(a) Processing time of different codes and CPU versus Block Size. 

 

 
(b). The speedups of different codes versus Block Size  

Fig. 6. Performance of different codes with various system sizes. 
 

The efficiency of these codes are studied for various 
system size L ranging from 4 to 768, that is, Block size from 
2 to 384. Larger systems are not simulated for the limit of 
the global memory on Tesla C1060. The processing time of 
different codes for 100 sweeps through the lattice is shown 
in Fig. 6(a). Further more, the speedups of these codes are 
shown in Fig. 6(b). When running these codes, the same 
number of threads are executing in parallel, the only 
difference between these codes is the digits multiplied by 
threadIdx.x, blockIdx.x and blockIdx.y. According to FIG. 6 
and TABLE II, if threadIdx.x multiplied by the largest digit, 
that is, z assigned to threadIdx.x, the performance will be 
very slow, the assignment of blockIdx.x and blockIdx.y 
doesn’t have much influence to the performance of the GPU 
(lines of code I and II), if we indicate y as threadIdx.x, 
blockIdx.x multiplied by a small digit will obtain a higher 
performance than multiplied with a large digit (lines of code 
III and IV), whatever, the performance of these codes is 
better than the form ones (I and II), for the fastest two codes 
V and VI, threadIdx.x multiplied by smallest digit 2, 

blockIdx.x multiplied by a small number will help us to gain 
a better performance, it is obvious that code VI has a better 
efficiency than code V. It can be guessed that the efficiency 
of the GPU is closely related with the digits multiplied by 
the thread label (blockIdx.y, blockIdx.x, threadIdx.x), 
smallest to threadIdx.x, later a larger number to blockIdx.x, 
the largest to blockIdx.y will behave best. 
 

VI. SUMMARIES 
Compaired with the CPU version algorithm, applying 

GPU as a data-parallel coprocessor of CPU has a great 
advantage on saving computing time. The speedup of GPU 
for Monte Carlo simulations of the Ising model is related to 
the system size(Block size), as the number of threads 
simulating is equal to the number of subcells, the larger the 
system is, the lager the speedup is. In the 2D situation, the 
speedups of a system with a Block size of 512 are 55, 63 and 
69 for the honeycomb, square and triangular lattices 
respectively, which implicits that the speedup do not have 
much to do with the coordination numbers of lattices. While 
in the 3D case, it is more complex than 2D ones, the 
speedup of the GPU is also related to the thread assignment, 
different codes behave differently, the best code gain a 
speedup of 179 while the worst code does not show any 
speedup. As Metropolis algorithm does not efficient enough 
near the critical point as the critical slowing down happens, 
our further work may facous on the GPU based 
single-cluster algorithm and the hybrid algorithm consists of 
the GPU based Metropolis and CPU based wolff algorithm. 
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