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Abstract—In this paper we present simulation of 

optimization of branch prediction in parallel register sharing 

architecture to show high degree of ILP. The main idea behind 

this concept is to use a step beyond the prediction of common 

branch and permitting the architecture to have the information 

about the CFG (Control Flow Graph) components of the 

program to have better branch decision for ILP. The 

navigation bandwidth of prediction mechanism depends upon 

the degree of ILP. It can be increased by increasing control 

flow prediction in procedural languages at compile time. By 

this the size of initiation is increased that allows the overlapped 

execution of multiple independent flow of control. The multiple 

branch instruction can also be allowed. These are intermediate 

steps to be taken in order to increase the size of dynamic 

window to achieve a high degree of ILP exploitation.   

 
Index Terms—Basic Block, CFG, CFP, ILP.  

 

I.  INTRODUCTION 

ILP is the methodology for execution of multiple 

instructions per cycle. It is now desirable to modern 

processors for better performance. It has been observed that 

ILP is greatly forced by branch instructions. Also it has been 

observed that branch prediction is employed with 

speculative execution [1]. However, inevitable branch 

misprediction compromises such a remedy. On the other 

hand branch prediction exposes high degree of ILP to 

scheduler by converting control flow into equivalent 

predicated instructions which are protected by Boolean 

source operands. The if-conversion [2] has been shown to be 

promising method for exploitation of ILP in the presence of 

control flow.    

The if-conversion in the prediction is responsible for 

control dependency between the branches and remaining 

instructions creating data dependency between the predicate 

definition and predicated structures of the program. As a 

result the transformation of control flow becomes optimized 

traditional data flow and branch scheduling becomes 

reordering of serial instructions. The degree of ILP can be 

increased by overlapping multiple program path executions.  

Some predicate specific optimization may also be 

performed as a supplement of traditional sequential 

computing approaches. The major questions regarding the 

if-conversion: what to if-convert and when to if-convert 

explore that the if-conversion should be performed early in 
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the compilation stage. It has the advantage of classified 

optimization facilitation on the predicted instructions 

whereas a delay in if-conversion is scheduled in the time 

slots for better selection for code efficiency and target 

processor characteristics. The dynamic branch prediction is 

fundamentally is restricted to establishing a dynamic 

window because it can make local decision without any 

prior knowledge or of global control statement in the code. 

This short of knowledge creates several problems like (1) 

branch prediction and (2) its identity. It means the branch 

must be encountered by parallel register sharing architecture 

[3]. 

 

II. RELATED WORK 

The fetch unit has a great role in prediction mechanism 

[2] in parallel register sharing architecture but Pan, So and 

Rahmeh (1992) [4], and Yeh Y. Patt (1993) [5] proposed 

some recent prediction mechanism that do not require the 

addresses of branches for prediction rather there is 

requirement of identity of each branch to be known so that 

the predicted target address can be obtained using either 

BTB [6] or by decoding branch instructions in parallel 

register sharing architecture. There are so many 

commercially available embedded processors that are 

capable to extend the set of base instructions for a specific 

application domain. A steady progress has been observed in 

tools and methodology for automatic instruction set 

extension for processors that can be configured to exploit 

ILP. It has been observed that the limited data bandwidth is 

available in the core processors. This creates a serious 

performance deadlock. Cong, Han and Zhiru Zhang (2005) 

[7] represents a very low cost architectural extension and a 

compilation technique responsible for data bandwidth 

problem. A novel parallel global register binding is also 

presented in [7] with the help of hash function algorithm. 

This leads to a nearly optimal performance speedup of 2% 

of ideal speedup. A compilation framework [1] is presented 

that allows a compiler to maximize the benefits of 

prediction. 

Steve Carr (1996) [8] shown how the weakness of 

traditional heuristics are exploited. Optimal use of loop cash 

is also explored to release the unnecessary pressure. A 

technique to enhance the ability of dynamic ILP processors 

to exploit the parallelism is introduced in [9]. A 

performance metric is presented in [8] to guide the nested 

loop optimization. This facilitates ILP with loop as 

combined optimization.  

The impact of ILP processors on the performance of 

shared memory multiprocessors [10] with and without 

latency hiding optimizing software prefetching has been 
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represented by Pai, Ranganathan, Shafi andAdve (1999). 

One of the critical goals in the code optimization for 

multiprocessor system on single chip architecture [11] is to 

minimize the number of off chip memory access. A strategy 

has been represented in [11] to reduce the number of off 

chip references due to shared data. In contrast to [3], an 

aggressive register reclamation mechanism targeted to 

micro-architecture is presented in [12] by Salvador Petit 

Martı et. al. (2009).  Due to normal branch prediction, a 

prediction can be made while the fetch unit fetches the 

branch instruction for their execution. Tameesh Suri and 

Aneesh Aggarwal, (2009) in [13] represent a mechanism to 

improve the per-core performance while maintaining the 

scalability. [13] integrates a reconfigurable hardware unit 

(RHU) in the resource constrained cores for performance 

improvement. 

Static techniques (for example, like trace scheduling [11], 

[14] predicated execution [15], super block and hyper block 

scheduling [9], [16], etc.) have been used to promote the 

impact of control dependencies. Lam Wilson (1992) [17], 

represents a study that shows the ILP processors which 

perform branch prediction and speculative execution. But it 

allows only a single flow of control that can extract a 

parallelism of only 7.0. The parallelism limit is increased to 

13.05 if the ILP processors use the maximal of control 

dependence information for instruction execution before 

branches which they are independent.  

 

III. CONTROL FLOW GRAPH CHARACTERISTICS 

EXTRACTION 

The ISB (Instruction Stream Buffer) architecture and the 

ISB structure are presented in [3] for control flow 

prediction. The information presented in CFG for  a 

program can be exploited by ISB architecture that presents 

parallelization of shared register after inspection of control 

flow graph of  a program, it is possible to infer that some of 

the basic blocks may be executed regardless previous branch 

outcome. Below is a C language code. 

 
 

   for (i = 0; i < input; i++) 
 { 

a1 = a[0]->ptand[i]; 
b1 = b[0]->ptend[i]; 

if(a1==2) 
a1 = 0; 

if(b1==2) 
b1 = 0; 

if(a1 != b1) 
{ 
if(a1 < b1)  
{ 
return -1; 
} 
else 
{ 
return 1; 
      } 

      } 

} 
 

The Fig. 1 represents a CFG. This shows a number of 

instructions in each basic block.  

 
Fig. 1. Control flow graph of above code. 

 

The simulation experiments are performed Trimaran 

simulator [18] for a MIPS 2000 executable extending from 

the node BB-1 following multiblock BB-1 to BB-2, BB-1 to 

BB-3, BB-1 to BB-4, BB-1 to BB-5, and BB-1 to BB-8 with  

BB-1 to BB-8 as maximal multiblock having single target. 

The multiblock BB-1 to BB-6, BB-1 to BB-7 and BB-1 to 

BB-9 can not be counted as multiblocks as they have three 

targets.  

A CFG (whose nodes are basic blocks) can be 

transformed into an equivalent graph whose nodes are 

multiblocks. The information of multiblock is sent to ISB 

architecture and informed decisions are navigated through 

the control free graph. When a multiblock enters then its exit 

point can be determined easily even though the exact path is 

unknown.  

The execution of multiblocks may overlap each other 

creating overlapped execution of multiple control flow. The 

data dependencies between the instructions in multiblocks 

and parallel register sharing architecture create a platform 

for a kind of subgraph used in multiblock construction. 

There are several reasons for restricting the scope of 

multiblocks. As an instance if the architecture is capable for 

exploiting inter multiblock parallelism then it could be 

better to combine the dependent instructions into a single 

unit (multiblock). Each iteration of data independent loop 

BB-1 

 Three instructions (1-3), 62% prediction accuracy 

BB-2 
   One instruction (4) 

BB-3 
   One instruction (5), 62% prediction accuracy 

BB-4 
   One instruction (6) 

BB-5 
    Two instructions (7-8) 

BB-6 
   One instruction (9) 

BB-7 
   Two instructions (10-11) 

 

BB-8 
Two instructions (12-13) 

 

BB-9 
 Four instructions (14-17), 98% prediction accuracy 
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can be considered as a multiblock to permit one iteration per 

cycle initiation. Following code shows loop where iterations 

are dependent:  
 

for(fptr = xlenv; fptr; fptr=cdr(fptr)) 
{ 
for(ep = car(fptr); ep; ep = cdr(ep)) 

{ 
       if(sym == car(car(ep))) 
       return (cdr(car(ep))); 

} 
 
} 

 

As an advantage, an entire loop can be encapsulated to 

form a multiblock. The code given above is double nested 

loop. The inner loop is used to traverse a linked list and its 

execution is dependent of data and control. If we define the 

entire inner loop to be a single multiblock then there is a 

possibility of starting several activation of inner loop 

without waiting for completion of previous one. The 

flexibility in construction in multiblock is increased by 

allowing many targets and as a result a larger multiblock is 

formed. In case, the number of targets are increased the 

dynamic prediction setup needs additional number of state 

information and as a result the accuracy of prediction is 

decreased. Therefore, it allow multiblocks to have maximum 

two targets that may be compromised. As an exception, 

when a multiblock has three or more targets then at run time 

except on or two, all are rarely exercised. The reduced CFG 

of figure 1 is given by Fig. 2. 

 

 
Fig. 2. Reduced CFG of figure 1 

 

Fig. 2 shows a multiblock construction from BB-1 

through BB-8. It contains 16 static instructions. An average 

7.46 instructions are executed dynamically. The multiblock 

construction for BB-9 has 4 instructions. 

The first multiblock (BB-1 to BB-8) is called MB(1-8) and 

the second multiblock (only BB-9) is MB(9). In this reduced 

CFG only two predictions are required per iteration of the 

loop as compare to four predictions in CFG given by above 

code having double nested loop that an ordinary branch 

prediction approach would require. Following is the control 

flow table (CFT) for control flow prediction: 

 
TABLE I: CONTROL FLOW TABLE 

Address Target 1 Target 2 Target 3 

MB(1-8) MB(9) Return 16 

MB(9) MB(10) MB(1-8) 4 

 

The control flow prediction buffer (CFPB) is temporary 

of CFT entries. The CFT entries are appended with 

sufficient information to help dynamic prediction decision. 

The CFPB is accessed once for every multiblock activation 

record to calculate the size and targets of multiblock. The 

following table is for CFPB entries of the reduced CFG 

given by figure 2. 

 
TABLE II: CFPB ENTRIES 

Address 
State of 

prediction 
Target 1 Target 2 length 

MB(1-8) Taken MB(9) Return 16 

MB(9) Taken MB(10) MB(1-8) 4 

 

IV. SIMULATION EXPERIMENTS AND ANALYSIS 

As discussed earlier, we conducted our experiments on 

Trimaran Simulator. Trimaran Simulator is an integration of 

compilation and performance monitoring infrastructure. 

Trimaran is intended to various compiler techniques like 

ILP, compiler optimization, retargetable compilation etc., 

and computer architectures like VLIW, EPIC, etc. We first 

evaluate the strength of control flow prediction concept on 

abstract machine that maintains a dynamic window from 

which ILP is extracted.  

For experimental purpose we used compress, gcc, 

SuperMips, xlisp, yacc and tex coded in C language. The table 

3 shows the basic structure for different programs. The 

programs are evaluated in terms of dynamic instructions, 

conditional and unconditional branch ratio, static code size, 

and CFT size. 

 
TABLE III:  BASIC STRUCTURE FOR DIFFERENT PROGRAMS 

Program 

Name 

Dynamic 

Instructions 

(millions) 

Conditional  

Branch 

Ratio 

Un- 

conditional 

Branch Ratio 

Static 

code 

size 

Static 

CFT 

size 

compress 22.68 0.149 0.040 6144 88.5 

gcc 1000 0.156 0.042 172032 25653 

SuperMips 500 0.111 0.056 14336 1851 

tex 214.67 0.143 0.055 60416 9976 

xlisp 500 0.157 0.091 21504 3637 

yacc 26.37 0.237 0.020 12288 1737 

 

It has been observed that the dynamic window initiates 

the instructions and the machine executes the instructions. 

The instructions chosen by the machine at any given time 

can be from various parts of the dynamic window with 

different flow of control in the program. The table 4 shows 

variation in number of branches traversed per cycle without 

control flow prediction. 

 
TABLE IV: BRANCH TRAVERSAL RESULTS WITHOUT CONTROL FLOW 

PREDICTION 
 Program 

   Name 

Initiation 

mean size  

 Window   

 mean size 

Branch prediction 

accuracy 

  compress 5.24 64 89.59 

gcc 5.02 72 91.12 

SuperMips 5.97 320 97.15 

Tex 5.02 169 95.87 

Xlisp 4.02 143 95.64 

Yacc 3.87 103 95.74 

 

The Table V shows variation in number of branches 

traversed per cycle with control flow prediction. In case of 

gcc, the control flow prediction we observed is 1.47 

branches per cycle and in tex 1.16 branches per cycle as 

shown in table 5. 

 BB-1  BB-2  BB-3  BB-4  BB-5 BB-6  BB-7 

 BB-8  BB-9 
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TABLE V: BRANCH TRAVERSAL RESULTS WITH CONTROL FLOW 

PREDICTION 
 

 Program Initiation 

mean size  

 Window   

 mean  

 size 

Branch 

prediction 

accuracy 

 Traversed  

 branches  

 per cycle 

   compress 8.40 86 89.71 1.33 

gcc 9.44 105 91.02 1.47 

SuperMips 13.24 845 97.72 2.18 

tex 6.24 207 96.10 1.16 

xlisp 5.11 157 95.34 1.16 

yacc 4.96 150 96.51 1.22 

 

The numbers of branches are reduced by control flow 

prediction. It used traversal of multiple branches in a single 

prediction. The effect on the accuracy of the branch 

prediction was not seen uniform across all programs. 

 

V. CONCLUSION 

As the prediction decision is over, the instructions from 

the predicted path are fetched in the next branch as the 

predicated path is encountered. For any two consecutive 

arbitrary branches it is sometimes impossible to determine 

the identity of the next branch to make prediction in the very 

next cycle when a branch prediction is over.  

It was seen that if the branch prediction is not made in 

each and every cycle then the prediction bandwidth and the 

number of instructions per cycle are suffered. The prediction 

mechanism can perform one prediction per cycle as long as 

the next branch lies inside the block of fetch instruction in 

the instruction buffer. The number of instruction that can 

enter into the dynamic window in the cycle is another 

problem. The best case instruction per cycle is restricted to 

the number of instruction that can move in to dynamic 

window. If there is possibility of traversing then only one 

branch at a time in CFG can be initialized per cycle and 

average initiation time is restricted by the length of code. As 

a possible solution of this problem we used multiblocks to 

traverse multiple branches at a time. This can be achieved 

by initiating a set of node of control flow graph to execute. 

The problem of accuracy and the size of dynamic window 

can be eliminated if some of the branches with low 

prediction accuracies belong to the if-else structure. 
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