



Abstract—In this paper we present simulation of

optimization of branch prediction in parallel register sharing

architecture to show high degree of ILP. The main idea behind

this concept is to use a step beyond the prediction of common

branch and permitting the architecture to have the information

about the CFG (Control Flow Graph) components of the

program to have better branch decision for ILP. The

navigation bandwidth of prediction mechanism depends upon

the degree of ILP. It can be increased by increasing control

flow prediction in procedural languages at compile time. By

this the size of initiation is increased that allows the overlapped

execution of multiple independent flow of control. The multiple

branch instruction can also be allowed. These are intermediate

steps to be taken in order to increase the size of dynamic

window to achieve a high degree of ILP exploitation.

Index Terms—Basic Block, CFG, CFP, ILP.

I. INTRODUCTION

ILP is the methodology for execution of multiple

instructions per cycle. It is now desirable to modern

processors for better performance. It has been observed that

ILP is greatly forced by branch instructions. Also it has been

observed that branch prediction is employed with

speculative execution [1]. However, inevitable branch

misprediction compromises such a remedy. On the other

hand branch prediction exposes high degree of ILP to

scheduler by converting control flow into equivalent

predicated instructions which are protected by Boolean

source operands. The if-conversion [2] has been shown to be

promising method for exploitation of ILP in the presence of

control flow.

The if-conversion in the prediction is responsible for

control dependency between the branches and remaining

instructions creating data dependency between the predicate

definition and predicated structures of the program. As a

result the transformation of control flow becomes optimized

traditional data flow and branch scheduling becomes

reordering of serial instructions. The degree of ILP can be

increased by overlapping multiple program path executions.

Some predicate specific optimization may also be

performed as a supplement of traditional sequential

computing approaches. The major questions regarding the

if-conversion: what to if-convert and when to if-convert

explore that the if-conversion should be performed early in

Manuscript received July 10, 2012; resived August 27, 2012.

Rajendra Kumar is with Computer Science and engineering Department,

Vidya College of Engineering, Meerut (Uttar Pradesh), India (phone: +91-

9412002322, e-mail: rajendra04@gmail.com, website:

http://www.rkronline.in).

P. K. Singh is with the Computer Science and engineering Department,

MMM Engineering College, Gorakhpur (Uttar Pradesh), India (e-mail:

topksingh@gmail.com).

the compilation stage. It has the advantage of classified

optimization facilitation on the predicted instructions

whereas a delay in if-conversion is scheduled in the time

slots for better selection for code efficiency and target

processor characteristics. The dynamic branch prediction is

fundamentally is restricted to establishing a dynamic

window because it can make local decision without any

prior knowledge or of global control statement in the code.

This short of knowledge creates several problems like (1)

branch prediction and (2) its identity. It means the branch

must be encountered by parallel register sharing architecture

[3].

II. RELATED WORK

The fetch unit has a great role in prediction mechanism

[2] in parallel register sharing architecture but Pan, So and

Rahmeh (1992) [4], and Yeh Y. Patt (1993) [5] proposed

some recent prediction mechanism that do not require the

addresses of branches for prediction rather there is

requirement of identity of each branch to be known so that

the predicted target address can be obtained using either

BTB [6] or by decoding branch instructions in parallel

register sharing architecture. There are so many

commercially available embedded processors that are

capable to extend the set of base instructions for a specific

application domain. A steady progress has been observed in

tools and methodology for automatic instruction set

extension for processors that can be configured to exploit

ILP. It has been observed that the limited data bandwidth is

available in the core processors. This creates a serious

performance deadlock. Cong, Han and Zhiru Zhang (2005)

[7] represents a very low cost architectural extension and a

compilation technique responsible for data bandwidth

problem. A novel parallel global register binding is also

presented in [7] with the help of hash function algorithm.

This leads to a nearly optimal performance speedup of 2%

of ideal speedup. A compilation framework [1] is presented

that allows a compiler to maximize the benefits of

prediction.

Steve Carr (1996) [8] shown how the weakness of

traditional heuristics are exploited. Optimal use of loop cash

is also explored to release the unnecessary pressure. A

technique to enhance the ability of dynamic ILP processors

to exploit the parallelism is introduced in [9]. A

performance metric is presented in [8] to guide the nested

loop optimization. This facilitates ILP with loop as

combined optimization.

The impact of ILP processors on the performance of

shared memory multiprocessors [10] with and without

latency hiding optimizing software prefetching has been

Simulation of Branch Prediction Optimization in Parallel

Register Sharing Architecture

Rajendra Kumar and P. K. Singh, Member IACSIT

International Journal of Modeling and Optimization, Vol. 2, No. 5, October 2012

575

represented by Pai, Ranganathan, Shafi andAdve (1999).

One of the critical goals in the code optimization for

multiprocessor system on single chip architecture [11] is to

minimize the number of off chip memory access. A strategy

has been represented in [11] to reduce the number of off

chip references due to shared data. In contrast to [3], an

aggressive register reclamation mechanism targeted to

micro-architecture is presented in [12] by Salvador Petit

Martı et. al. (2009). Due to normal branch prediction, a

prediction can be made while the fetch unit fetches the

branch instruction for their execution. Tameesh Suri and

Aneesh Aggarwal, (2009) in [13] represent a mechanism to

improve the per-core performance while maintaining the

scalability. [13] integrates a reconfigurable hardware unit

(RHU) in the resource constrained cores for performance

improvement.

Static techniques (for example, like trace scheduling [11],

[14] predicated execution [15], super block and hyper block

scheduling [9], [16], etc.) have been used to promote the

impact of control dependencies. Lam Wilson (1992) [17],

represents a study that shows the ILP processors which

perform branch prediction and speculative execution. But it

allows only a single flow of control that can extract a

parallelism of only 7.0. The parallelism limit is increased to

13.05 if the ILP processors use the maximal of control

dependence information for instruction execution before

branches which they are independent.

III. CONTROL FLOW GRAPH CHARACTERISTICS

EXTRACTION

The ISB (Instruction Stream Buffer) architecture and the

ISB structure are presented in [3] for control flow

prediction. The information presented in CFG for a

program can be exploited by ISB architecture that presents

parallelization of shared register after inspection of control

flow graph of a program, it is possible to infer that some of

the basic blocks may be executed regardless previous branch

outcome. Below is a C language code.

 for (i = 0; i < input; i++)
 {

a1 = a[0]->ptand[i];
b1 = b[0]->ptend[i];

if(a1==2)
a1 = 0;

if(b1==2)
b1 = 0;

if(a1 != b1)
{
if(a1 < b1)
{
return -1;
}
else
{
return 1;
 }

 }

}

The Fig. 1 represents a CFG. This shows a number of

instructions in each basic block.

Fig. 1. Control flow graph of above code.

The simulation experiments are performed Trimaran

simulator [18] for a MIPS 2000 executable extending from

the node BB-1 following multiblock BB-1 to BB-2, BB-1 to

BB-3, BB-1 to BB-4, BB-1 to BB-5, and BB-1 to BB-8 with

BB-1 to BB-8 as maximal multiblock having single target.

The multiblock BB-1 to BB-6, BB-1 to BB-7 and BB-1 to

BB-9 can not be counted as multiblocks as they have three

targets.

A CFG (whose nodes are basic blocks) can be

transformed into an equivalent graph whose nodes are

multiblocks. The information of multiblock is sent to ISB

architecture and informed decisions are navigated through

the control free graph. When a multiblock enters then its exit

point can be determined easily even though the exact path is

unknown.

The execution of multiblocks may overlap each other

creating overlapped execution of multiple control flow. The

data dependencies between the instructions in multiblocks

and parallel register sharing architecture create a platform

for a kind of subgraph used in multiblock construction.

There are several reasons for restricting the scope of

multiblocks. As an instance if the architecture is capable for

exploiting inter multiblock parallelism then it could be

better to combine the dependent instructions into a single

unit (multiblock). Each iteration of data independent loop

BB-1

 Three instructions (1-3), 62% prediction accuracy

BB-2
 One instruction (4)

BB-3
 One instruction (5), 62% prediction accuracy

BB-4
 One instruction (6)

BB-5
 Two instructions (7-8)

BB-6
 One instruction (9)

BB-7
 Two instructions (10-11)

BB-8
Two instructions (12-13)

BB-9
 Four instructions (14-17), 98% prediction accuracy

International Journal of Modeling and Optimization, Vol. 2, No. 5, October 2012

576

can be considered as a multiblock to permit one iteration per

cycle initiation. Following code shows loop where iterations

are dependent:

for(fptr = xlenv; fptr; fptr=cdr(fptr))
{
for(ep = car(fptr); ep; ep = cdr(ep))

{
 if(sym == car(car(ep)))
 return (cdr(car(ep)));

}

}

As an advantage, an entire loop can be encapsulated to

form a multiblock. The code given above is double nested

loop. The inner loop is used to traverse a linked list and its

execution is dependent of data and control. If we define the

entire inner loop to be a single multiblock then there is a

possibility of starting several activation of inner loop

without waiting for completion of previous one. The

flexibility in construction in multiblock is increased by

allowing many targets and as a result a larger multiblock is

formed. In case, the number of targets are increased the

dynamic prediction setup needs additional number of state

information and as a result the accuracy of prediction is

decreased. Therefore, it allow multiblocks to have maximum

two targets that may be compromised. As an exception,

when a multiblock has three or more targets then at run time

except on or two, all are rarely exercised. The reduced CFG

of figure 1 is given by Fig. 2.

Fig. 2. Reduced CFG of figure 1

Fig. 2 shows a multiblock construction from BB-1

through BB-8. It contains 16 static instructions. An average

7.46 instructions are executed dynamically. The multiblock

construction for BB-9 has 4 instructions.

The first multiblock (BB-1 to BB-8) is called MB(1-8) and

the second multiblock (only BB-9) is MB(9). In this reduced

CFG only two predictions are required per iteration of the

loop as compare to four predictions in CFG given by above

code having double nested loop that an ordinary branch

prediction approach would require. Following is the control

flow table (CFT) for control flow prediction:

TABLE I: CONTROL FLOW TABLE

Address Target 1 Target 2 Target 3

MB(1-8) MB(9) Return 16

MB(9) MB(10) MB(1-8) 4

The control flow prediction buffer (CFPB) is temporary

of CFT entries. The CFT entries are appended with

sufficient information to help dynamic prediction decision.

The CFPB is accessed once for every multiblock activation

record to calculate the size and targets of multiblock. The

following table is for CFPB entries of the reduced CFG

given by figure 2.

TABLE II: CFPB ENTRIES

Address
State of

prediction
Target 1 Target 2 length

MB(1-8) Taken MB(9) Return 16

MB(9) Taken MB(10) MB(1-8) 4

IV. SIMULATION EXPERIMENTS AND ANALYSIS

As discussed earlier, we conducted our experiments on

Trimaran Simulator. Trimaran Simulator is an integration of

compilation and performance monitoring infrastructure.

Trimaran is intended to various compiler techniques like

ILP, compiler optimization, retargetable compilation etc.,

and computer architectures like VLIW, EPIC, etc. We first

evaluate the strength of control flow prediction concept on

abstract machine that maintains a dynamic window from

which ILP is extracted.

For experimental purpose we used compress, gcc,

SuperMips, xlisp, yacc and tex coded in C language. The table

3 shows the basic structure for different programs. The

programs are evaluated in terms of dynamic instructions,

conditional and unconditional branch ratio, static code size,

and CFT size.

TABLE III: BASIC STRUCTURE FOR DIFFERENT PROGRAMS

Program

Name

Dynamic

Instructions

(millions)

Conditional

Branch

Ratio

Un-

conditional

Branch Ratio

Static

code

size

Static

CFT

size

compress 22.68 0.149 0.040 6144 88.5

gcc 1000 0.156 0.042 172032 25653

SuperMips 500 0.111 0.056 14336 1851

tex 214.67 0.143 0.055 60416 9976

xlisp 500 0.157 0.091 21504 3637

yacc 26.37 0.237 0.020 12288 1737

It has been observed that the dynamic window initiates

the instructions and the machine executes the instructions.

The instructions chosen by the machine at any given time

can be from various parts of the dynamic window with

different flow of control in the program. The table 4 shows

variation in number of branches traversed per cycle without

control flow prediction.

TABLE IV: BRANCH TRAVERSAL RESULTS WITHOUT CONTROL FLOW

PREDICTION
 Program

 Name

Initiation

mean size

 Window

 mean size

Branch prediction

accuracy

 compress 5.24 64 89.59

gcc 5.02 72 91.12

SuperMips 5.97 320 97.15

Tex 5.02 169 95.87

Xlisp 4.02 143 95.64

Yacc 3.87 103 95.74

The Table V shows variation in number of branches

traversed per cycle with control flow prediction. In case of

gcc, the control flow prediction we observed is 1.47

branches per cycle and in tex 1.16 branches per cycle as

shown in table 5.

 BB-1 BB-2 BB-3 BB-4 BB-5 BB-6 BB-7

 BB-8 BB-9

International Journal of Modeling and Optimization, Vol. 2, No. 5, October 2012

577

International Journal of Modeling and Optimization, Vol. 2, No. 5, October 2012

578

TABLE V: BRANCH TRAVERSAL RESULTS WITH CONTROL FLOW

PREDICTION

 Program Initiation

mean size

 Window

 mean

 size

Branch

prediction

accuracy

 Traversed

 branches

 per cycle

 compress 8.40 86 89.71 1.33

gcc 9.44 105 91.02 1.47

SuperMips 13.24 845 97.72 2.18

tex 6.24 207 96.10 1.16

xlisp 5.11 157 95.34 1.16

yacc 4.96 150 96.51 1.22

The numbers of branches are reduced by control flow

prediction. It used traversal of multiple branches in a single

prediction. The effect on the accuracy of the branch

prediction was not seen uniform across all programs.

V. CONCLUSION

As the prediction decision is over, the instructions from

the predicted path are fetched in the next branch as the

predicated path is encountered. For any two consecutive

arbitrary branches it is sometimes impossible to determine

the identity of the next branch to make prediction in the very

next cycle when a branch prediction is over.

It was seen that if the branch prediction is not made in

each and every cycle then the prediction bandwidth and the

number of instructions per cycle are suffered. The prediction

mechanism can perform one prediction per cycle as long as

the next branch lies inside the block of fetch instruction in

the instruction buffer. The number of instruction that can

enter into the dynamic window in the cycle is another

problem. The best case instruction per cycle is restricted to

the number of instruction that can move in to dynamic

window. If there is possibility of traversing then only one

branch at a time in CFG can be initialized per cycle and

average initiation time is restricted by the length of code. As

a possible solution of this problem we used multiblocks to

traverse multiple branches at a time. This can be achieved

by initiating a set of node of control flow graph to execute.

The problem of accuracy and the size of dynamic window

can be eliminated if some of the branches with low

prediction accuracies belong to the if-else structure.

REFERENCES

[1] E. Qui˜nones and J. M. Parcerisa, “Improving Branch Prediction and

Predicated Execution in Out-of-Order Processors,” in Proc. of 13th

International Symposium on High Performance Computer

Architecture, 2007, pp. 75-84.

[2] D. I. August, W. Mei W. Hwu, and S. A. Mahlke, “The Partial

Reverse If-Conversion Framework for Balancing Control Flow and

Prediction,” International Journal of Parallel Programming, vol.

27, issue 5, pp. 381– 423, 1999.

[3] R. Kumar and P. K. Singh, “A Modern Parallel Register Sharing

Architecture for Code Compilation,” International Journal of

Computer Applications, vol. 1, no. 16, pp. 108-113, 2010.

[4] S. T. Pan, K. So, and J. T. Rahmeh, “Improving the Accuracy of

Dynamic Branch Prediction Using Branch Correlation,” in Proc. of

Architectural Support for Programming Languages and Operating

Systems (ASPLOS-V), pp. 76-84, 1992.

[5] T. Yeh and Y. Patt, “A Comparison of Dynamic Branch Predictors

that use Two Levels of Branch History,” in Proc. of 20th Annual

International Symposium on Computer Architecture, pp. 257-266,

May 1993.

[6] J. K. F. Lee and A. J. Smith, “Branch Prediction Strategies and

Branch Target Buffer Design,” IEEE Computer Magazine, vol. 17,

pp. 6-22, 1984.

[7] J. Cong, G. L. Han, and Z. Zhang, “Architecture & compilation for

data bandwidth improvement in configurable embedded processors,”

in Proc. of the International Conference on Computer Aided Design

IEEE/ACM, pp. 263-270, 2005.

[8] S. Carr, “Combining Optimization for Cache and Instruction-Level

Parallelism,” in Proc. of the Conference on Parallel Architectures and

Compilation Techniques, pp. 238-247, 1996.

[9] D. N. Pnevmatikatos, M. Franklin, and G. S. Sohi, “Control flow

prediction for dynamic ILP processors,” in Proc. of the 26th annual

international symposium on Microarchitecture, pp. 153 – 163, 1993.

[10] V. S. Pai, Parthasarathy Ranganathan, Hazim Abdel-Shafi, and Sarita

Adve, “The Impact of Exploiting Instruction-Level Parallelism on

Shared-Memory Multiprocessors,” IEEE Trans. on Computers, vol.

48 , pp. 218 – 226, 1999.

[11] G. Chen and M. Kandemir, “Compiler-Directed Code Restructuring

for Improving Performance of MPSoCs,” IEEE Trans. on Parallel

and Distributed Systems, vol. 19, no. 9, 2008.

[12] S. Petit Martı et. al., “A Complexity-Effective Out-of-Order

Retirement Microarchitecture,” IEEE Trans. on Computers, vol. 58,

no. 12, pp. 1626 - 1639, 2009

[13] T. Suri and A. Aggarwal, “Improving Scalability and Per-core

Performance in Multi-cores through Resource Sharing and

Reconfiguration,” in Proc. of the 22nd IEEE International

Conference on VLSI Design, pp. 145 – 150, 2009.

[14] J. Fisher, “Trace Scheduling: A Technique for Global Microcode

Compaction,” IEEE Trans. on Computers, vol. C-30, July 1981.

[15] P. Chang, S. Mahlke, W. Chen, N. Warter, and W. Hwu, “IMPACT:

An Architectural Framework for Multiple-Instruction-Issue

Processors”, in Proc. of the 18th Annual International Symposium on

Computer Architecture, pp. 266 – 275, May 1991.

[16] S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann, „„Effective

Compiler Support for Predicated Execution Using the Hyperblock,” in

Proc. of the 25th Annual Workshop on Microprogramming and

Microarchitecture, pp. 45 – 54, 1992.

[17] L. Wilson, “Limits of control flow on parallelism,” in Proc. of 19th

annual International symposium on Computer Architecture, pp. 46 –

57, 1992.

[18] Trimaran an integrated compilation and performance monitoring

infrastructure developed and maintained by the CCCP Group at the

University of Michigan, and the Commit Group at MIT, [Online].

Available: www.trimaran.org

Rajendra Kumar obtained Bachelor of

Engineering from BIET Jhansi, Master of

Technology from UPTU Lucknow, in Computer

Science & Engineering. His area of interest

includes Theoretical Computer Science, Human

Computer Interaction, Computer Graphics,

Biometric Systems, ICT, etc. His current research

area is Instruction Level Parallelism.

He is Associate Professor and Head of Computer Science & Engineering

department at Vidya College of engineering, Meerut. He is active

reviewer of Journal of Computational Biology and Bioinformatics

Research, Nairobi. He is author of four text books including Theory of

Automata, Languages & Computation from McGraw Hill, and eight

distance learning books for MDU Rohtak, CDLU Sirsa, MGU Kerla,

etc.

Prof. Kumar is member of IACSIT Singapore, CSTA USA, IAENG

Hong Kong, ISTE New Delhi and Amnesty International UK. Prof.

Kumar also has been Member of Board of Studies of Uttar Pradesh

Technical University, Lucknow.

P. K. Singh graduated from M. M. M. Engineering

College, Gorakhpur with a Bachelor of Computer

Science degree and M.Tech. from University of

Roorkee (now IIT Roorkee) in Computer Science

and Technology then obtained a Doctor degree in

the area of Parallelizing Compilers. He teaches a

number of Computer Science subjects including

Compiler Design, Automata Theory, Advanced

Computer Architectures, Parallel Computing, Data Structures and

Algorithms, Object Oriented Programming C++ and Computer Graphics

etc., but mostly he teaches Compiler Design and Parallel Computing.

He is an Associate Professor of Computer Science & Engineering at
MMM Engineering College, Gorakhpur. Prof. Singh is author of
Computer graphics book. He is member of several sicieties and bodies
of Different organizations and universities.

http://www.trimaran.org/

