
 

  
Abstract—In this paper, a Bayesian criterion-based method 

called the Lv measure, as well as its calibration distribution, is 
introduced and applied to model selection of structural 
equation models with ordered categorical data. A simulation 
study is presented to illustrate the satisfactory performance of 
the Lv measure in model selection. A quality of life data is 
analyzed for illustration. 
 

Index Terms—ordered categorical data; Lv measure; Model 
selection; MCMC algorithm.  
 

I. INTRODUCTION 
  Structural equation models (SEMs) have been widely 

used in behavioral, educational, medical and social sciences.  
In these fields, categorical variables are often encountered. A 
typical example is when a subject is asked to report the 
opinion about a policy on scales like ‘strongly disagree’, 
‘disagree’, ‘no opinion’, ‘agree’, ‘strongly agree’, or to report 
the effect of a drug on scales like ‘getting worse’, ‘no change’, 
‘getting better’. To deal with this kind of data, SEMs with  
ordered categorical variables are proposed. In the analysis of 
SEMs with ordered categorical data, a commonly used 
approach is to treat the variables as observations that come 
from a hidden continuous normal distribution with a 
threshold specification, see Lee [1] for example. An 
important issue in the application of SEMs with ordered 
categorical data is to optimize the given model. In this paper, 
we treat this problem as model selection, and apply a 
Bayesian criterion-based method, which is called the Lv 
measure [2], to model selection. The Lv measure involves 
two components, the first one is related with the reliability, 
and the other one measures the discrepancy between the 
predictions and the observations. Thus, the model with the 
smallest Lv measure is considered as the optimal model. We 
also considered the calibration distribution of the Lv measure, 
which will allow us to compare two competing models 
formally. The Bayesian approach, together with MCMC 
algorithms, is used to estimate the latent variables and 
unknown parameters, and to compute the Lv measure for 
SEMs with  ordered categorical data. 

The remainder of this paper is divided into four sections. In 
Section II, model selection of nonlinear SEMs with  ordered 
categorical data will be discussed. In Section III, a simulation 
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study is presented to demonstrate the performance of the Lv 
measure. In Section IV, a real example is analyzed.  A 
discussion is given in Section V. 

 

II. MODEL SELECTION OF STRUCTURAL EQUATION MODELS 
WITH  ORDERED CATEGORICAL DATA 

A. Nonlinear structural equation model with  ordered 
categorical data 

Let iy ( 1, ,i n= ) be a 1p ×  random vector of observed 
variables, and 1( , , )n=Y y y . The measurement and 
structural equations of the structural equation model is 
defined by 

:   ,
       ( ) ,

i i i

i i i i

M = + +
= + +

y u Λω ε
η Πη ΓF ξ δ

                         (1) 

where u  is a 1p ×  mean vector; iω  is a 1q × vector of latent 
variables; iε  is a 1p ×  random vector of error terms, and is 

independent of iω ; ( , )T T T
i i i=ω η ξ , in which 1( 1)i q ×η and 

2( 1)i q ×ξ are vectors of endogenous and exogenous latent 
variables, respectively; Π and Γ  are matrices of unknown 
regression coefficients; 1( ) ( ( ), , ( ))T

rf f⋅ = ⋅ ⋅F  is a  
vector-valued function with differentiable functions 

1( ), , ( )rf f⋅ ⋅ , and 2r q≥ ; iδ  is a 1 1q ×  random vector of 
error terms, and is independent of iξ . We assume that, for 

1, ,i n= , 

~ [ , ],  ~ [ , ] , ~ [ , ]i i iN N Nε δε 0 Ψ δ 0 Ψ ξ 0 Φ ,               (2) 

where 1( , , )pdiagε ε εψ ψ=Ψ and
11( , , )qdiagδ δ δψ ψ=Ψ  

are diagonal  matrices. 
Let ηΛ  and ξΛ  be the submatrices of Λ  corresponding 

to iη and iξ , respectively. And let 0 = −Π I Π , which is 

assumed to be nonsingular, then model M can be written as 
1

0 ( ( ) )i i i i i
−= + + + +y u ΛΠ ΓF ξ δ Λξ ε .              (3) 

To deal with ordered categorical data,  suppose 
, ,( , )i o i u i=y y y , where ,o iy  ( 1r × ) and ,u iy  ( 1s × ) are 

vectors corresponding to the observed and unobserved 
continuous variables, separately. The information of ,u iy is 

given by the observed categorical variables in iz , and the 
relationship between them is given as follows: 
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(4)                         

where { }0,1, ,ik kz b∈ , and { },0 ,1 , 1, , ,
kk k k k bα α α +=α is a 

vector of thresholds.  In general, we set ,0kα = −∞ ，

, 1kk bα + = ∞ . Thus, for the kth variable, there are 1kb +  

categories which are defined by the unknown thresholds kα . 
We denote the model defined by (1) to (4) as M . As 
discussed in Lee and Song [3], without imposing any 
identification conditions, models with ordered categorical 
variables are unidentified. So, we fix ,1kα and , kk bα  at some 

pre-assigned values. To identify the covariance structure of 
iy , following the common practice, we fix some appropriate 

elements in Λ and Π  at pre-assigned values. In the 
following part of this paper, some notations are used. Let 

( , )obs obs obs
o u=Y Y Y be the matrix of the observations, where 

,1 ,( , , )obs obs obs
o o o n=Y y y  and ,1 ,( , , )obs

u u u n=Y y y are matrices 
of observations corresponding to the observed and 
unobserved continuous variables, respectively, and 

,( , )obsT T T
i o i u=y y y . Let  1( , , )obs obs obs

n=Z z z   be the matrix of 
observations corresponding to the observed ordered 
categorical variables. Moreover, let ( , )rep rep rep

o u=Y Y Y  be the 

replication of obsY ,  and repZ be the replication of obsZ . Let 
1( , , )n=Ω ω ω be the matrix of latent variables, and  

1 1( , , )n=Ω η η  and 2 1( , , )n=Ω ξ ξ  be the submatrices 
of Ω corresponding to iη and iξ , respectively. Furthermore, 
let 1( ( ), ,=G G ω  ( ))nG ω , and let θ  be the vector that 
contains all the unknown parameters involved in (1) to (3), 
and α be the vector that contains all the thresholds in (4). 

B. Lv measure for nonlinear structural equation models 
with  ordered categorical data 

Suppose { , 1, , , 1, , }obs obs
ijy i n j p= = =Y is the matrix 

of observations which come from the exponential family, 
then the Lv measure [2] is defined by 

1 1
( ) ( | ) ( )

pn
obs rep obs obs

v ij ij ij
i j

L Var y v y μ
= =

⎡ ⎤= + −⎣ ⎦∑∑Y Y
             (5) 

where rep
ijy is the replication of obs

ijy , ( | )rep obs
ij ijE yμ = Y  is 

the conditional expectation which is taken with respect to the 
posterior predictive distribution: 

( | ) ( | ) ( )rep obs rep
ij ijp y p y p d= ∫Y θ θ θ . 

 However, in the proposed model M , the observations are 
( , )obs obs

oY Z  , which include ordered categorical data . The 
distribution of order categorical variable are not belongs to 
exponential family. Thus, (5) cannot be used directly for this 
kind of data. In this paper, the method proposed by Chen et al. 
[4] is used to transform these ordered categorical data into a 
binary data. Specifically, a new vector 

*
,1 , 1( , , )

k

T
ik ik ik bz z +=z is defined as follows:   

,

1 1
1, , 1, 1, ,

0,
ik

ik j k

if z j
z j b k s

otherwise
= −⎧

= = + =⎨
⎩

，
， . (6)               

From (4), we have 

, , 1 , , ,( 1) ( 1) ( )ik j ik k j u ik k j ik jp z p z j p y pα α−= = = − = < ≤ , 
and , , ,( 0) 1 ( 1) 1ik j ik j ik jp z p z p= = − = = − .It can be shown 
that , ,~ ( )ik j ik jz Bernoulli p  which belongs to exponential 
family, and , , , , ,( ) , ( ) (1 )ik j ik j ik j ik j ik jE z p Var z p p= = − .  

According to (6), obs
ijz and rep

ijz can be transformed to binary 

vectors *obs
ikz and *rep

ikz , respectively. Then the quadratic loss 
Lv measure for the ordered categorical data is defined by 

( , , )q obs obs
v oL MY Z  

{ }* * * * *

1 1
( | , , ) ( ) ( )

s n
rep obs obs obs T obs
ik o ik ik ik ik

k i
tr Var M v

= =

⎡ ⎤= + − −⎣ ⎦∑∑ z Y Z z μ z μ ,

(7) 
where * *( | , , )rep obs obs

ik ik oE M=μ z Y Z , in which the conditional 
expectation is taken with respect to the posterior predictive 
distribution: 

*

, ,

( | , , )

( 1, , , , | , , )

rep obs obs
ik j o

rep obs obs
ik i u i o i u i

p M

p z j M d d d d

=

= = −∫
z e Y Z

θ α ξ y Y Z θ α ξ y
 

where je is a ( 1) 1kb + × vector with 1 at the j th element and 
0 at the others, and  

,

, ,

, 1 , , , ,

( 1, , , , | , , )

( 1 | , , , , ) ( , , , | , , )

( | , , , , ) ( , , , | , , ).

rep obs obs
ik i u i o

rep obs obs
ik i u i i u i o

rep obs obs
k j u ik k j i u i i u i o

p z j M

p z j M p M

p y M p Mα α−

= −

= = −

= < ≤

θ α ξ y Y Z

θ α ξ y θ α ξ y Y Z

θ α ξ y θ α ξ y Y Z
 

It can be shown that (7) can be rewritten as: 

1
* * * 2

, , ,
1 1 1

( , , )

( | , , ) ( )
k

q obs obs
v

bs n
rep obs obs rep
ik j o ik j ik j

k i j

L M

Var z M v z μ
+

= = =

= + −∑∑∑

Y Z

Y Z
    (8) 

where *
,( | , , )rep obs obs

ik j oVar z MY Z  is the jth diagonal element of 

the conditional variance matrix *( | , , )rep obs obs
ik oVar Mz Y Z and 

*
,ik jμ is the jth element of the conditional expectation *

ikμ . 
Thus, 

* *
, ,

, 1 , , ,

( | , , )

( | , , , , ) | , ,

rep obs obs
ik j ik j o

rep obs obs
k j u ik k j i u i o

E z M

E p y M M

μ

α α−

=

⎡ ⎤= < ≤⎣ ⎦

Y Z

θ α ξ y Y Z
  

According to the definition of the proposed model, given 
θ and iξ , uy has a normal distribution with mean 

1
, 0 ,( ( ))u u i u iη ξ

−+ +u Λ Π ΓF ξ Λ ξ , and covariance matrix 
1 1

, 0 0 ,( ( ) )T T
u u uη δ η ε

− − +Λ Π Ψ Π Λ Ψ , where uu , ,u ηΛ , ,u ξΛ and 

uεΨ are the submatrices of u , ηΛ , ξΛ and εΨ   corresponding 
to ,u iy , respectively. Therefore, 

, 1 , , , 0 1( | , , , , ) ( ) ( )rep
k j u ik k j i u ip y M A Aα α− < ≤ = Φ − Φθ α ξ y  

where ,u ku is the kth element of uu ; ,u kηΛ and ,u kξΛ are the 

kth row of ,u ηΛ  and ,u ξΛ , respectively; ukεψ is the kth 
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diagonal element of uεΨ ; ( )Φ ⋅  is the cumulative distribution 
function of the standard normal distribution. Similarly, the 
conditional variance required in (7) is given by 

* * *
, , ,( | , , ) (1 )rep obs obs

ik j o ik j ik jVar z M μ μ= −Y Z .                

For the observations obs
oY corresponding to the observed 

continuous variables, the Lv measure defined by (5) is used. 
Therefore, given observations ( , )obs obs

oY Z , the Lv measure 
for the model M can be defined by  

2

1 1
1

* * * 2
, , ,

1 1 1

( , , )

( | , , ) ( )

( | , , ) ( )

ik

k

obs obs
v

r n
rep obs obs rep

o ik ik
k i

bs n
rep obs obs rep
ik j o ik j ik j

k i j

L M

Var y M v y

Var z M v z

μ

μ

= =

+

= = =

⎡ ⎤= + −⎣ ⎦

⎡ ⎤+ + −⎣ ⎦

∑∑

∑∑∑

Y Z

Y Z

Y Z ,      (9)      

 

where ( | , , )rep obs obs
ik ik oE y Mμ = Y Z . Let ou , ,o ηΛ , ,o ξΛ and 

uεΨ are submatrices of u , ηΛ , ξΛ and εΨ   corresponding to 

,
obs
o iy , respectively. Then we get 

1
, , 0 ,

( | , , )

( ) | , ,
ik

rep obs obs
ik o

obs obs
o k o k i o k i o

E y M

E u Mη ξ

μ
−

=

⎡ ⎤= + +⎣ ⎦

Y Z

Λ Π ΓF ξ Λ ξ Y Z ,
 

where ,o ku is the kth element of ou ; ,o kηΛ and ,o kξΛ are the 
kth row of ,o ηΛ  and ,o ξΛ , respectively. The conditional 
variance in the first summation of (9) is given by 

( | , , ) ( | , , ) | , ,

                                   ( | , , ) | , ,
ik ik

ik

rep obs obs rep obs obs
o i o

rep obs obs
i o

Var y M E Var y M M

Var E y M M

⎡ ⎤= ⎣ ⎦
⎡ ⎤+ ⎣ ⎦

Y Z θ ξ Y Z

θ ξ Y Z
. 

Due to the existence of intractable integrals in calculating 
the conditional expectation and variance, we cannot get a 
closed form of the Lv measure. Therefore, Markov Chain 
Monte Carlo (MCMC) methods are used to calculate the Lv 
measure for the proposed SEM. 

C. Computation of the Lv  Measure 
From its definition, the Lv measure can be estimated with a 

sufficiently large number of random observations 
( ) ( ) ( ) ( ){ , , ; 1, , }

u

g g g g g G=θ Ω ,α Y , which are generated from 

the conditional distribution ( , , | , , )obs obs
u op θ α,Ω Y Y Z M . To 

generate this sample, Gibbs sampler algorithm [5] given 
below is used. With current values ( ) ( ) ( ) ( )( , , )

u

g g g gθ Ω ,α Y : 

Step a Generate ( 1)g +Ω  from ( ) ( 1) ( ) ( )( | , , , , , )
u

g g g g obs obs
op +Ω θ α Y Y Z M ,  

Step b Generate ( 1)g +θ  from ( ) ( ) ( )( | , , , , )
u

g g g obs obs
op θ α ,Ω Y Y Z M .    

Step c Generate ( 1) ( 1)( , )
u

g g+ +α Y  from ( 1) ( 1)( , | , , , )g g obs obs
u op + +α Y θ Ω ,Y Z M .    

After obtaining convergence, the random sample of latent 
variables and unknown parameters can be collected. For 

1, ,i n= and 1, ,k r= , let  
( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( )

, , 0 ,( ) ( ( ))g g g g g g g g
ik o k o k i o k iu η ημ −= + +Λ Π Γ F ξ Λ ξ ,  

( )

1

1ˆ
G

g
ik ik

gG
μ μ

=

= ∑ ,  and ( ) ( ) 2 2

1

1ˆ ˆ[ ( ) ]
G

g g
ik ok ik ik

gG εσ ψ μ μ
=

= + −∑ . 

Moreover, for 1, ,k s= and 1, , 1kj b= + , let  

( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( )
, , , 0 ,( )

, ( )

{ ( ) ( ) }g g g g g g g g
k j u k u k i u k ig

ik j g
uk

u
A η ξ

ε

α
ψ

−− + +
=

Λ Π Γ F ξ Λ ξ
, 

( )* ( ) ( )
, , , 1( ) ( )g g g

ik j ik j ik jA Aμ −= Φ − Φ , ( )*
, ,

1

ˆ /
G

g
ik j ik j

g
Gμ μ

=

=∑ , *
, , ,ˆ ˆ ˆ(1 )ik j ik j ik jσ μ μ= − . 

Then the estimate of the Lv measure for the proposed model 
can be given by 

2

1 1
1

* * * 2
, , ,

1 1 1

ˆ ˆ ˆ( , , ) ( )

ˆ ˆ                           ( )
k

n r
obs obs obs

v o ik ik ik
i k

bn s
obs

ik j ik j ik j
i k j

L M v y

v z

σ μ

σ μ

= =

+

= = =

⎡ ⎤= + −⎣ ⎦

⎡ ⎤+ + −⎣ ⎦

∑∑

∑∑∑

Y Z
 

To obtain the conditional distributions in the Gibbs 
sampler, the prior distributions of the unknown parameters 
are needed. In this paper, the following commonly used 
conjugate type prior distributions are used: 

20 0 0 0( ) [ , ], ( ) [ , ]qp N p IW ρu u Σ Φ R ,         (10) 
1

0 0

0 0 1

( ) Gamma[ , ],  
( | ) [ , ], 1, , ,

k k k

k k k k k

p
p N k q

δ δ δ

ω δ ω δ ω

ψ α β
ψ ψ

−

=Λ Λ H
(11)

 
1

0 0 0 0( ) Gamma[ , ],   ( | ) [ , ], 1, , .j j j j j j j jp p N j pε ε ε ε εψ α β ψ ψ− =Λ Λ H

(12) 
 where the parameters in the above prior distributions  are 

hyperparameters whose values are assumed to be given. 
For k h≠ , it is assumed that ( , )k kεψ Λ  and ( , )h hεψ Λ  are 
independent; for j h≠ , ( , )j jδ ωψ Λ  and ( , )h hδ ωψ Λ  are 
assumed to be independent. For the unknown thresholds in 
α , the following non-informative prior distribution is used: 

,1 , 1 ,2 , 1( ) ( , , ) ,     , 1, , .
k kk k k b k k bp p C k sα α α α+ += ∝ < < =α

 

where C is a constant. With these prior distributions, the 
posterior distributions required in the Gibbs sampler can be 
obtained.  However, the conditional distributions required in 
step a and step c are non-standard and complex, the 
Metropolis-Hastings (MH) algorithm [6][7] is used. To save 
space, the conditional distributions are not presented,  details 
can be found in [1]. 

D. Calibration Distribution 
As pointed out by [2], criterion-based methods typically 

rely on the minimum criterion value as the basis for model 
selection. However, this basis is not satisfactory in general, 
since it does not allow a formal selection of criterion values 
between two or more competing models. Thus, one of the 
crucial steps in using criterion-based method for model 
assessment and model choice is to define a calibration for the 
criterion.  Let ( , , )obs obs

v o cL MY Z  denote the Lv measure of 

the candidate model cM , and  ( , , )obs obs
v o tL MY Z  denote the 

Lv measure of the true model tM . Then given v , the 
difference of the Lv measures between the candidate model  

cM  and the true model tM  is defined as 

( , , ) ( , , ) ( , , )obs obs obs obs obs obs
v o c v o c v o tD M L M L M≡ −Y Z Y Z Y Z . 
Then the calibration distribution is defined as the marginal 

distribution of ( , , )obs obs
v o cD MY Z . From the definition, given 

v, ( , , )obs obs
v o cD MY Z is a random variable of obsY . Thus,  the 

marginal distribution  is computed with respect to the prior 
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predictive distribution of obsY  under the true model tM : 

( , ) ( , | , , ) ( , | )obs obs obs obs
t o o t tp p M p M d d= ∫Y Z Y Z θ α θ α θ α  

where ( , | )tp Mθ α  denotes the prior distribution of the  
unknown parameters under the true model tM .  We denote the 
calibration distribution by 

( )( , )obs
c v cPL p D M≡ Y  . 

This definition is appealing because it avoids the potential 
problem of a double use of the data. After obtaining the 
calibration distribution cPL , several statistical summaries can 
be obtained. These include the highest probability density 
(HPD) interval, the mean vμ , and the standard deviation vSD  
of the calibration distribution. Here, HPD interval denotes 
the shortest credible interval that means the interval with the 
highest posterior density, and it can be computed by using a 
Monte Carlo (MC) method [8]. vμ  measures, on the average, 
how close the candidate model and the true model are. vSD  
measures the variability of calibration distribution. [3] show 
that cPL  is not sensitive to choices of vague proper priors, 
and suitable choices of informative priors can be useful in 
improving the precision in the estimation of cPL . 

For the proposed model, we cannot get a closed form of the 
calibration distribution. So MCMC methods are used again to 
estimate the calibration distributions of the models under 
consideration. The specific procedure for the estimation of 

cPL  is given as follows: Generate ( , , )Ω θ α  from the prior 
predictive distribution ( | , ) ( | )t tp M p MΩ θ θ  ( | )tp Mα ; 

Generate Y from distribution ( | , , , , )tp MαY Ω θ ; 

Set obs =Y Y , calculate the Lv measures ( , , )obs obs
v o cL MY Z  

and ( , , )obs obs
v o tL MY Z , then calculate ( , , )obs obs

v o cD MY Z . 
Repeat these three steps H times, we can collect a sample of  

( ){ ( , , ), 1, , }h obs obs
v o cD M h H=Y Z .  Based on this sample, 

the calibration distribution cPL can be estimated via the 
kernel density estimation method [9], and then the summaries 
of cPL  can be easily obtained. Since the true model is usually 
unknown in practical applications, the model with the 
smallest Lv measure will be considered as the true model tM . 

III. A SIMULATION STUDY 
The observations ,{ , ; 1, , }( 300)o i i i n n= =y z  are 

generated from the following model: 
0 1 1 2 2 3 1 2: ,  and i i i i i i i i iM η γ ξ γ ξ γ ξ ξ δ= + + = + + +y u Λω ε , 

where , ,( , )T T T
i o i u i=y y y is a 9 1× vector, and (4 1)i ×z which 

corresponds to ,u iy  is generated from (4) through threshold 

1 4( , , )=α α α . The specification of the loading matrix is 

* * * * * * *
21 31

* * * * * * *
52 62

* * * * * * *
83 93

1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1

T

λ λ
λ λ

λ λ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

Λ  

where the elements with asterisks are fixed. The true values 

of the unknown parameters in this model are given as: 
21 31 0.8λ λ= = , 52 62 0.7λ λ= = , 83 93 0.8λ λ= = , 1 0.6γ = ,

2 0.6γ = , 3 0.5γ = − (0, ,0)T=u , 11 22 1.0φ φ= = ,

12 21 0.2φ φ= = , 1 9 0.5ε εψ ψ= = = , 0.5δψ = , and 
* *

1 4 ( 1.0 , 0.6,0.6,1.0 )T= = = − −α α , in which the elements 
with asterisks are fixed. Four SEMs denoted by 1 4, ,M M  
are considered as competing models. The measurement 
equations of these models are the same as that of 0M . Their 
structural equations are 

2 2
1 1 1,1 1, 1 1,2 1, 2 1,3 1, 1 1,4 1, 2 1,5 1, 1 1, 2 1,: ,i i i i i i i iM η γ ξ γ ξ γ ξ γ ξ γ ξ ξ δ= + + + + +

2 2 2,1 2, 1 2,2 2, 2 2,: i i i iM η γ ξ γ ξ δ= + + , 

2
3 3 3,1 3, 1 3,2 3, 2 3,3 3, 1 1,: i i i i iM η γ ξ γ ξ γ ξ δ= + + + , 

2
4 4 4,1 4, 1 4,2 4, 2 4,3 4, 2 1,: i i i i iM η γ ξ γ ξ γ ξ δ= + + + . 

The prior distributions given in (10) to (12) are used. To 
study the impact of the prior inputs of the hyperparameters, 
two types of prior inputs, Prior I and Prior II, are considered. 

Prior I: The means in the normal prior distributions are 
taken as the true values of the corresponding parameters, and 
the covariance matrices are taken as the identity matrices 
with corresponding dimensions; 0ρ and 0R  in the Wishart 
distribution are taken to be 4 and 0Φ , respectively, where 0Φ  
is the matrix with true values of 11 12,φ φ  and 22φ ; the 
hyperparameters in the Gamma distributions are taken to be 

0 0 9k δα α= =  , and 0 0 4k δβ β= = . 
Prior II:  The prior inputs are given by the following ad 

hoc values: the means of the normal distributions are taken as 
zero, the covariance matrices are equal to four times of the 
identity matrices with appropriate dimensions, 0 4ρ =  and 

0R  is the identity matrix, 0 0 4k δα α= =  and 0 0 5k δβ β= = . 
For each replication, a total of 2000R =  observations are 

collected after 2000 burn-in iterations. The results are 
obtained on the basis of 100 replications. The calibration 
summaries are given in TABLE 1, where 0.5μ , 0.5SD , and 
95% HPD denote the mean, the standard deviation, and the 
95% HPD interval of the calibration distribution of the 
corresponding model with 0.5v = , respectively. From 
TABLE 1, we see that under each type of prior inputs, 

0.5μ corresponding to 2 3,M M  and 4M  are substantially 
larger than zero. In addition, the 95% HPD intervals 
corresponding to these models do not include zero. Thus, we 
can conclude that 2 3,M M  and 4M are far from the true 
model, and 0M performs much better than them. However, 
for model 1M , 0.5μ  is not significantly different from zero 
given the large value of 0.5SD  under each case. Furthermore, 
zero is included in all the 95% HPD intervals of the 
calibration distribution of 1M . Therefore, we can conclude 
that 1M  performs similar as 0M , according to the 
parsimonious principle, the simpler model 0M  is selected 
under each given type of prior inputs.  The estimated 
calibration distributions presented in Fig. 1 (a) and Fig. 1(b)  
also agree with these conclusions. 
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TABLE 1. CALIBRATION SUMMARIES 

 Model 0.5μ  0.5SD  95%HPD 
 
 

 
Prior I 

1M   1.118 10.463 (-14.35,22.74) 

2M  44.726 21.968 (5.489,79.53) 

3M  41.155 25.904 (8.724,84.18) 

4M  46.998 34.075 (2.47,88.519) 

Prior II 

1M   1.91 20.953 (-19.854,77.5) 

2M  44.237 22.139 (4.492,89.98) 

3M  39.869 21.143 (-0.313,83.85) 

4M  41.832 22.702 (5.707,100.52) 

 

  
Fig1.Calibration distributions in simulation study: (a) under Prior I, 

(b)under Prior II 

IV. A REAL EXAMPLE 
Measures of quality of life (QOL) and/or health-related 

QOL have great value for clinical work, and the planning and 
evaluation of health care. A Bayesian method for analyzing a 
common QOL data with ordered categorical items has been 
discussed in [1]. The aim of this section is to apply the Lv 
measure to model selection in the analysis of this QOL data. 
The instrument WHOQOL-100 for measuring QOL given in 
[10] was established to evaluate four latent constructs: 
physical health, psychological health, social relationships, 
and environment. In the instrument, Q3 to Q9 measure 
`physical health',  Q10 to Q15 measure  `psychological 
health', Q16 to Q18 measure `social relationships', and the 
last eight items (Q19 to Q26) measure `environment'. In 
addition to the 24 ordered categorical items, the instrument 
also includes two ordered categorical items, the overall QOL 
(Q1) and the health-related QOL (Q2), giving a total of 26 

items. All of the items are measured with a 5-point scale (1 = 
`not at all/very dissatisfied'; 2 =`a little/dissatisfied'; 3 = 
`moderate/neither'; 4 =`very much/satisfied'; 5 = 
`extremely/very satisfied'). The sample size of the whole data 
set is extremely large. To illustrate the performance of Lv 
measure, we only analyze a synthetic data set with sample 
size n = 338.  We compare a SEM M1 with four exogenous 
latent variables with another SEM M2 with three exogenous 
latent variables. The measurement equation of M1 is defined 
by 

1 1= +y Λω ε , 

where 1 1 2 3 4( , , , , )Tη ξ ξ ξ ξ=ω , 1~ [ , ]N εε 0 Ψ ,and 

21

42 92
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0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

T

λ
λ λ

λ λ
λ λ

λ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ  

The structural equation of M1 is given by 

1 1 2 2 3 3 4 4η γ ξ γ ξ γ ξ γ ξ δ= + + + + . 

where 1 2 3 4( , , , )Tξ ξ ξ ξ=ξ  and δ  are independently 

distributed as 1[ ]N 0,Φ and 2
1[0, ]N δσ , respectively. The 

measurement equation of M2 is defined by 

2 2= +y Λ ω ε , 

where 2 1 2 3( , , , )Tη ξ ξ ξ=ω , 2~ [ , ]N εε 0 Ψ ,and 

21

42 92
2

11,3 15,3

17,4 26,4

1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1

T

λ
λ λ

λ λ
λ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Λ  

The structural equation of M2 is given by 

1 1 2 2 3 3η γ ξ γ ξ γ ξ δ= + + + . 

where 1 2 3( , , )Tξ ξ ξ=ξ  and δ  are independently distributed 
as 2[ ]N 0,Φ and 2

2[0, ]N δσ , respectively.  
In the above two models, y is the underlying vector of 

manifest variables, which corresponds to the observation z . 
The relationship between y  and z is defined by equation (4). 

The threshold are given by 1 26( , , )T=α α α , where 

1 6( , , )k k kα α=α , 1kα = −∞ , 6kα = ∞ , 1, 26k = . For 
identification, some elements of the thresholds will be fixed 
at certain values. Here the standard normal distribution N[0,1] 
is applied to ky , and then 2kα  and 5kα  can be fixed 
according to the cumulative frequencies of the ordered 
categorical items, see [1] for more details. 

To calculate the Lv measure, the conjugate prior 
distributions are used. The hyperparameter values 
corresponding to the prior distributions of the unknown 
loadings in 1Λ  and 2Λ  are all taken to be 0.8; those 
corresponding to 1 2 3 4( , , , )γ γ γ γ are (0.6,0.6,0.4,0.4); those 

corresponding to 1Φ  and 2Φ are 1 2 30ρ ρ= = . 1
01 48− =R I , 

1
02 38− =R I  , respectively; let dI  be an identity matrix with 
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dimension d , we take 0 1 40.25kω =H I , and 0 2 30.25kω =H I ; 

0 1 0 2 0 1 0 1 10k k k kε ε δ δα α α α= = = = and 0 1 0 2k kε εβ β=  0 1kδβ=  

0 1 10kδβ= = . In the Gibbs sampling in computing the Lv 
measure and the estimation of unknown parameters, we take 
J=2000  observations after a burn-in phase of 4000 iterations. 
Lv measure is 7273.01 for M1 and 7343.826 for M2. As the 
value of the Lv measure of M1 is less than that of M2, M1 is 
selected. To obtain the calibration distribution, 100 data sets 
are generated based on M1 under Prior I. The calibration 
distribution summaries are given in Table 2, and the density 
of the calibration distribution is given in Fig. 3. 

 
TABLE 2. CALIBRATION SUMMARIES FOR REAL EXAMLE 

Model 
0.5 ( )Dμ  0.5( )SD D 95%    HPD 

M2 95.6 17.896 (68.783,135.124) 
 

 
Fig. 2 Calibration Distribution for Real Example 

 
We see that the mean of the difference between the Lv 

measures of M1 and M2 is larger than zero, and the 95\% HPD 
interval does not include zero. Therefore, M1 is selected. The 
estimation of the the unknown parameters are given in Table 
3. 

To compare M1 and M2 by using Bayes factor, path 
sampling [11] is applied. First, we will compare model M1 
with the following model M0: 
M0 :     =y ε , 
where  ~ [ , ]N εε 0 Ψ  and εΨ  is a diagonal matrix. We obtain 
logB10 =81:36. Similarly, M2 and M0 can be compared via 
the path sampling procedure, and logB20 = 57:85; which 
means that M1 and M2 are both better than M0. Furthermore, 
from the above result, logB12 is equal to 23.51. Therefore, 
M1 is selected. 

For a SEM with ordered categorical variables, the software 
WinBUGs can produce the Bayesian estimates of the 
structural parameters and latent variables in the model, as 
well as the DIC value for model selection. In this example, 
DIC value is 19532.8 for model M1, and 19609.3 for model 
M2. Therefore, we can get the same conclusion as given by 
Lv measure.  

 

V.  DISCUSSION 
From the numerical studies given in the previous section, 

the Lv measure, Bayes factor, and DIC can achieve the same 
conclusion in model selection. However, the computational 
burden of Bayes factor is heavy. For example, when taking S 

= 20 in the path sampling in calculating Bayes factor, the 
computing time is almost twenty times of that for calculating 
the Lv measure. When applying DIC method, we select the 
model only according to the minimum DIC value. However, 
when the difference of DIC values between two competing 
models is small, we can't decide which one is better. As 
compared with the other two methods, the computation of the 
Lv measure is quite simple and fast. Moreover, besides 
considering the model with the smallest value of the Lv 
measure, the corresponding calibration distribution is also 
used to help making decision. Therefore, the Lv measure 
provides better alternative method for model selection of 
SEMs. 

 
TABLE 3. BAYESIAN ESTIMATES OF UNKNOWN PARAMETERS IN M1 

Param
eter 

EST 

SD
 

Param
eter 

EST 

SD
 

Param
eter 

EST 

SD
 

21λ  0.8
5 

0.0
7 δψ  0.25 0.0

3 17εψ 0.9
6 

0.0
9 

42λ  0.9
1 

0.0
9 1γ  0.76 0.0

9 18εψ 0.5
2 

0.0
6 

52λ  1.0
6 

0.0
8 2γ  0.37 0.1 

19εψ 0.5
3 

0.0
6 

62λ  1.1
4 

0.0
9 3γ  0.14 0.1

1 20εψ 0.6
7 

0.0
7 

72λ  0.7
9 

0.0
9 4γ  -0.0

3 
0.1
1 21εψ 0.7 0.0

7 

82λ  1.2
6 

0.0
8 1εψ 0.39 0.0

5 22εψ 0.7 0.0
7 

92λ  1.1
4 

0.0
8 2εψ 0.42 0.0

5 23εψ 0.7
4 

0.0
7 

11,3λ 0.8 0.0
9 3εψ 0.62 0.0

7 24εψ 0.5
7 

0.0
6 

12,3λ 0.7
2 

0.0
8 4εψ 0.61 0.0

7 25εψ 0.7
1 

0.0
7 

13,3λ 0.7
5 

0.0
9 5εψ 0.46 0.0

5 26εψ 0.6
6 

0.0
7 

14,3λ 1 0.0
8 6εψ 0.4 0.0

5 11φ  0.4
9 

0.0
6 

15,3λ 0.8
6 

0.0
8 7εψ 0.7 0.0

6 12φ  0.3
5 

0.0
4 

17,4λ 0.2
8 

0.0
9 8εψ 0.28 0.0

3 13φ  0.2
2 

0.0
4 

18,4λ 0.9
5 

0.0
1 9εψ 0.39 0.0

4 14φ  0.3
1 

0.0
4 

20,5λ 0.8 0.0
8 10εψ 0.47 0.0

5 22φ  0.5
8 

0.0
7 

21,5λ 0.7
7 

0.0
9 11εψ 0.65 0.0

7 23φ  0.3
8 

0.0
5 

22,5λ 0.7
6 

0.0
9 12εψ 0.71 0.0

7 24φ  0.3
9 

0.0
5 

23,5λ 0.7
1 

0.0
9 13εψ 0.7 0.0

7 33φ  0.5
9 

0.0
8 

24,5λ 0.9
7 

0.1
14εψ 0.45 0.0

5 34φ  0.3
8 

0.0
5 

25,5λ 0.7
7 

0.0
9 15εψ 0.57 0.0

6 44φ  0.5
4 

0.0
7 

26,5λ 0.8
4 

0.1
16εψ 0.46 0.0

6 
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