
  
Abstract—This work investigates how opera singers 

manipulate timing in order to produce expressive performances 
that have common features but also bear a distinguishable 
personal style.  We characterize performances not only relative 
to the score, but also consider the contribution of features 
extracted from the libretto. Our approach is based on applying 
machine learning to extract singer-specific patterns of 
expressive singing from performances by Josep Carreras and 
Placido Domingo. We compare and contrast some of these rules, 
and we draw some analogies between them and some of the 
general expressive performance rules existing in the literature. 
 

Index Terms—Expressive performance, machine learning, 
timing model  
 

I. INTRODUCTION 
In an interview that Charlie Rose took of the ̀ `three tenors'' 

back in 1994, Placido Domingo was explaining how he tries 
to color the notes to give a song the feel that he's looking for. 
Josep Carreras instead talks about building each note with 
precision until it transmits the right emotion in the context, 
but gladly sacrificing precision for expressiveness. While 
opera singers may conceptualize the interpretation process 
very differently and possibly at different abstraction levels, 
the modifications they apply to the score may be similar. 
With certainty, nevertheless, there are expressive changes 
that they consistently apply that create their personal mark. 

This work focuses on how these two specific singers 
manipulate timing to create expressive interpretations that 
have a well-defined personal style.  We start with a 
benchmark suite consisting of CD recordings of a cappella 
fragments from different tenor arias - seven performed by 
Josep Carreras and six by Placido Domingo. Using sound 
analysis techniques based on spectral models we extract 
acoustic high-level descriptors representing properties of 
each note, as well as of its context.  A note is characterized by 
its pitch and duration. The context information for a given 
note consists of the relative pitch and duration of the 
neighboring notes, as well as the Narmour [1] structures to 
which the note belongs. 

Given that the libretto is an important part of an operatic 
performance which may reinforce - but may also change the 
expressive quality of the music - we also consider it when 
characterizing the notes. Each note has a syllable - 
occasionally a couple of syllables - associated with it. Every 
syllable is naturally strongly or weakly stressed. A performer  
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may choose to accentuate weakly stressed syllables, or 
de-accentuate strong ones. Similarly, he can create 
syncopation by placing accent on weak beats, 
de-accentuating strong beats, or even pausing where a strong 
beat would normally occur. Whether inherent in the 
composition or introduced as expressive modifications, the 
performer may need to reconciliate possibly contradicting 
prosodic, metric, and score cues. For instance, adopting the 
wrong intonation or grouping the lyrics into the wrong 
prosodic units can ruin an otherwise good interpretation.  In 
this work we are considering libretto descriptors such as 
syllable stress and whether a syllable marks the end of a 
prosodic unit as explained later in the paper. 

Once each note in the benchmark suite is associated the 
corresponding acoustic and prosodic descriptors we apply 
machine learning techniques to understand under which 
conditions a performer modifies the score. Some of the most 
interesting rules we learn are presented in the result section. 
We contrast and compare some of the rules we learn from the 
performances of the two singers; we also compare these 
singer-specific rules with some of the general expressivity 
rules such as those proposed by Widmer [2] and the KTH [3] 
system. As expected, some of our rules describe similar 
concepts, although they are refinements of these and have 
lower coverage. There are also some rules for which we did 
not find good evidence, possibly due to the constraints on the 
size of our dataset and to the fact that the rules are probably 
sensitive to the style of music that they characterize. 

The rest of the paper is organized as follows. Section II 
describes related work in expressive performance. Section III 
describes our test suite, introduces the note-level descriptors, 
and explains how we extract the data that is used as the input 
to the ML algorithms. Section IV presents the learning 
algorithms; Section V discusses some of the most interesting 
results. We conclude in Section VI. 

 

II. RELATED WORK 
Understanding and formalizing expressive music 

performance is a challenging problem (e.g.[4]-[6]) which has 
been mainly approached via statistical analysis (e.g.[7]), 
mathematical modeling (e.g.[8]), and analysis-by-synthesis 
(e.g.[9]). In all these approaches, it is a person who is 
responsible for devising a theory which captures different 
aspects of musical expressive performance. This model is 
later tested on real performance data in order to determine its 
accuracy.  

A. Machine Learning Techniques  
As far as previous research addressing expressive music 

performance using machine learning techniques, Widmer [2] 
reports on the task of discovering general rules of expressive 
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classical piano performance from real performance data via 
inductive machine learning. The performance data used for 
the study are MIDI recordings of 13 piano sonatas by Mozart 
performed by a skilled pianist in the studio. An inductive rule 
learning algorithm discovered a small set of quite simple 
classification rules that predict a large number of the 
note-level choices of the pianist. We will also compare some 
of their rules with the singer-specific rules we obtain. 

Tobudic et al. [10] describe a relational instance-based 
approach to the problem of learning to apply expressive 
tempo and dynamics variations to a piece of classical music, 
at different levels of the phrase hierarchy.  Ramirez et al. [11] 
explore and compare different machine learning techniques 
for inducing both an interpretable and a generative expressive 
performance model for monophonic Jazz performances. 
They propose an expressive performance system based on 
inductive logic programming which learns a set of first order 
logic rules that capture expressive transformation both at an 
inter-note level and at an intra-note level. Based on the theory 
generated by the set of rules, they implement a melody 
synthesis component, which generates expressive 
monophonic output (MIDI or audio) from inexpressive MIDI 
melody descriptions.  

Lopez de Mantaras et al. [12] report on SaxEx, a 
performance system capable of generating expressive solo 
performances in jazz. Their system is based on case-based 
reasoning, a type of analogical reasoning where problems are 
solved by reusing the solutions of similar, previously solved 
problems. In order to generate expressive solo performances, 
the case-based reasoning system retrieves from a memory 
containing expressive interpretations, those notes that are 
similar to the input, inexpressive, notes. The case memory 
contains information about metrical strength, note duration, 
and so on, and uses this information to retrieve the 
appropriate notes. One limitation of their system is that it is 
incapable of explaining the predictions it makes. Other 
inductive machine learning approaches to rule learning in 
music and musical analysis include [13]-[15].  

B. Singing voice Synthesis 
Most of the research in expressive music performance is 

concerned with instrumental music, particularly jazz and 
classical, and focuses on specific instruments (e.g. piano, 
saxophone).  However, singing voice expressive performance 
has been much less explored. Alonso [16] describes the 
design of an expressive performance model focused on 
emotions for a singing voice synthesizer. The model is based 
on the rule system developed at KTH; the singing voice 
synthesizer is Daisy - developed at MTG at the UPF in 
Barcelona. 

Some approaches to synthesize expressive singing use a 
singing performance to control pitch and timing, e.g. [17]. In 
these approaches, it is a singing performance which directly 
controls the synthesized expressive performance. 

Another interesting approach is Vocalistener [18]. Their 
system tries to mimic a reference user voice by automatically 
predicting several parameters (f0, energy, onset and duration 
of notes) from the song lyrics. This approach is motivated by 
the fact that configuring these parameters is a time 
consuming and difficult task. Extending this approach to 
other features could be helpful for the generation of models 

of a particular singer, or those of artists belonging to a 
particular style. 

There have been other approaches to modeling the control 
parameters using system's inputs, e.g. [19], [20]. Both works 
attempt to model f0 in order to generate pitch contours mainly 
using second order exponential damping and oscillation 
models. 

In addition to f0, energy, and timing, performers often use 
other expressive resources such as growl and rough voice. 
Loscos et al. [21] have studied roughness caused by 
inter-period variations of the pitch (jitter) and the period 
amplitude (shimmer), as well as growl which is often used as 
an expressive accent. 

Saino [22] models singing style statistically, focusing on 
relative pitch, vibrato (rate and shape), and dynamics using 
context-dependent Hidden Markov Models. The parameters 
dependence on phonetics is removed and notes are 
considered to contain up to three regions depending on their 
position ('beginning', 'sustained' and 'end') which lead to up to 
seven patterns as a result of their combination. 

The KTH [3] rule system for singing synthesis is of 
particular relevance to us since it can be used to synthesize 
opera singer's voices. Some of the rules that they apply were 
originally developed for instruments ([23],[24]), others have 
been directly created in collaboration with a violinist and 
conservatory music teacher. We compare a few of their 
musical rules with the ones we have obtained. 

 

III. OUR TRAINING DATA 
Studying the singing style of well-known singers raises the 

issue of obtaining an extended training set. Not only there 
exist a small number of operatic fragments written for solo 
voice, but also the singer-specific expressive patterns may 
not transfer well across music styles. Automatic extraction of 
the voice from polyphonic pieces which has enough quality 
for our purposes is not a viable option. As a result, our 
training set consists of several fragments from five operas by 
Verdi and the recitativa Tombe degli avi miei from Lucia di 
Lamermoore by Donizetti. After manually eliminating those 
notes during which the orchestra can be heard, we are left 
with 841 notes in which the tenor and the orchestra do not 
overlap - 443 for Carreras and 398 for Domingo. 

A. Acoustic and Prosodic Analysis 
We use sound analysis techniques based on spectral 

models [25] for extracting high-level symbolic features from 
CD recordings. We characterize each performed note 
acoustically by a set of features representing both properties 
of the note and aspects of the musical context in which the 
note appears. Information about the note includes note pitch, 
duration, and metrical strength; information about its context 
includes the relative pitch, duration, and duration ratio of the 
neighboring notes (i.e. previous and following notes). For  
each musical fragment we additionally compute the actual 
tempo - without considering the notes annotated with fermata 
- and we associate it with every note in the fragment. 

The metrical strength depends on the meter signature that 
the music is written in. For instance, for a 4/4 signature the 
metrical strength is verystrong for the first beat, strong for the 
third beat, medium for the second and fourth beats, weak for 
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the offbeat, and veryweak for any other position of the note 
within a bar. 

 
Fig. 1.  Prototypical narmour structures 

 
We parse each melody in the training data and, based on 

the pitch information of the neighboring notes, we 
automatically extract the Narmour structures to which every 
note belongs. This is a way to provide an abstract structure to 
our performance data.  The Implication/Realization model 
proposed by Narmour is a theory of perception and cognition 
of melodies.  The theory states that a melodic musical line 
continuously causes listeners to generate expectations of how 
the melody should continue.  According to Narmour, any two 
consecutively perceived notes constitute a melodic interval, 
and if this interval is not conceived as complete, it is an 
implicative interval, i.e. an interval that implies a subsequent 
interval with certain characteristics. That is to say, some 
notes are more likely than others to follow the implicative 
interval.  Based on this, melodic patterns or groups can be 
identified that either satisfy or violate the implication as 
predicted by the intervals. Fig. 1 shows prototypical Narmour 
structures. 

Prosody can carry emotional information depending on 
intonational phrasing, and a skilled singer must manipulate 
the acoustic and prosodic parameters without transmitting 
conflicting messages. To begin understanding this interplay, 
we introduce two additional note annotations: (1) the stress 
naturally assigned in speech to the syllable which 
corresponds to the note (strong or weak), and (2) whether the 
note marks the end of a prosodic unit (PU), sub-prosodic unit 
(SPU), or of the phrase (EPH).  For the cases in which two 
syllables correspond to a single note we assign it weak stress 
only if both syllables have naturally weak stress. A prosodic 
unit is a semantic unit of meaning which can be as short as a 
word and as long as a statement; it is a chunk of speech that 
may in fact reflect how the brain processes speech. Even 
though it isn't necessary that the prosodic units and those 
phrases that hold well together musically overlap, in practice 
this is often the case. In the case of a vocal musical piece the 
structural information which the singer tries to convey via 
expressive alterations has to do both with the structure of the 
score as well as with that of the libretto; we therefore expect 
to observe unit termination rules. We consider that a prosodic 
unit ends at the end of each statement and is composed of 
sub-prosodic units. 

 

IV. THE LEARNING TASK 
We approach our task as a regression problem to learn a 

model for predicting the lengthening ratio of the performed 
note relative to the score note. The duration of the note as 
prescribed by the score is computed based on the actual 
tempo of the piece that the note is part of. A predicted ratio 
greater than 1 corresponds to performing the note longer than 
specified in the score, while a ratio smaller than 1 
corresponds to a shortened note. We use decision tree-based 
algorithms in Weka [26] for the learning task; specifically we 
use J48, REPTree, and M5. We also use Multilayer 
Perceptron (MlPerc) [27], as well as Bagging [28] and 

Gradient Boosting [29] with support vectors [30]. J48 is an 
implementation of the C4.5 [31] top-down decision tree 
algorithm. REPTree builds a decision/regression tree using 
information gain as the splitting criterion, and prunes it using 
reduce-error pruning with back-fitting. The M5 [32] 
algorithm generalizes decision trees to build model trees 
whose leaves consist of a linear regression model predicting 
the values of the output instances whose input values placed 
them on that path. Given the size of our dataset we use as 
example set the complete training data and we perform 
leave-one-out cross-validation.  
 

V. EXPERIMENTAL RESULTS 
As result of applying the algorithms as described above we 

obtain a set of expressive performance rules. We discuss 
several of them in the remainder of this section. We use the 
notation narmour(Y, grn) to specify the Narmour groups to 
which the note belongs. Its arguments are a list of Narmour 
groups (Y) and the position of the note in the Narmour group 
(n = 0,1,2). The note duration is measured as the fraction of a 
beat, where a beat is a 1/4 note. Intervals are measured in 
semitones. We use lengthen/shorten in relative terms to the 
nominal values rather than as a class discriminator. A 
registral change (RC) is a pitch inflection point. 

A. A Few Singer-specific Expressive Rules 
Lengthen short note before inflection point: In general, 
Domingo lengthens a short note preceding RC if the tempo is 
fast; the faster the tempo, the more lengthening is needed to 
prepare for the note marking the change. 
 

IF narmour(IP, gr0) AND Note_Dur < 0.5 AND            
narmour(P, gr1) AND Tempo >= 1.07  

THEN Str_Fct = 2.71 (D) 
 

IF narmour(IP, gr0) AND Note_Dur < 0.3 AND 
narmour(none, gr1) AND Tempo >= 1.35 

THEN Str_Fct = 5.32 (D) 
 

Carreras turns out to have more complex patterns when 
performing this lengthening transformation. If the tempo is 
not very fast he lengthens a short note preceding RC if the 
next interval is large; the larger the interval the more 
lengthening. 
 

IF narmour(none, gr2) AND narmour(IP, gr0) AND 
Note_Dur <= 0.5 AND Next_Int > -1 AND                         
Tempo <= 1.45 AND narmour(none, gr1) AND              
Prev_Int > -1  

THEN Str_Fct ∈ (Next_Int <= 6) ?                      
 (1.53,2.27) : (2.27,3.01) (C) 

 
This rather generic rule that both singers apply predicts the 

opposite of KTH's Leap Tone Duration (LTD) rule in the case 
of upward jumps for very short notes, particularly at very fast 
tempos. This rule shortens the first and lengthens the second 
note of a leap upward, and does the opposite for downward 
leaps. Similarly, Windmer's TL3 rule [2] also seems to 
contradict LTD; it may just be the case that the 
singer-specific rules don't predict what a general expressive 
model would. 
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As an exception, if the note preceding RC has 
ExtremelyHigh metric stress and it isn’t a RC note itself, then 
Carreras shortens it to avoid taking emphasis away from the 
RC note. 
 

IF narmour(IP, gr0) AND narmour(P, gr1) AND  
Metro = ExtremelyHigh  

THEN Str_Fct  ∈  (-inf,-0.79) (C) 
 

 
Give agogic accent to higher pitch notes:  

We actually discovered, for both singers, more specific 
lengthening rules that apply to notes before inflection points 
if they are followed by a jump down in pitch. Interestingly, 
Domingo lengthens short notes with weak metric stress 
preceding those in RC position if they follow a longer note 
and are followed by a jump down, especially for fast tempos. 
This effectively emphasizes pitch accented notes that are 
otherwise associated with weak beats.  

Carreras tends to lengthen RC notes longer than 1/12 
following a large jump up of at least 4 semitones and marking 
the beginning of a descending sequence of intervals. This is 
an instance of KTH's LTD rule: 
 

IF narmour(none, gr2) AND Note_Dur > 0.34 AND 
narmour(P, gr0) AND narmour(IP, gr1) AND                
Prev_Int <= -4                                                  

THEN Str_Fct = (2.27,3.01) (C) 
 

Lengthen notes with strong syllable stress, shorten those 
with weak stress: For notes following RC, Carreras shortens 
unstressed and lengthens stressed syllables to 
correspondingly increase or diminish their importance: 
 

IF narmour(ID, gr2) AND Note_Dur <= 0.5 
THEN Str_Fct ∈ (Syll_Stress = strong)? (3.8,4.5) : 

(-inf,-0.78) (C) 
 

Mark SPU/PU: Both Domingo and Carreras lengthen a 
short note marking the end of a sub-prosodic unit. In the case 
of Domingo, the larger the jump following an SPU note - 
probably an upward jump – the more is the note marked by 
lengthening it. The intuition is that one way to mark the end 
of the semantic unit right before a note receiving tonic accent 
is to give it agogic accent. He applies a similar rule for notes 
marking PUs. 
  

IF narmour(none, gr2) AND Note_Dur <= 0.5 AND 
Phrasing = SPU 

THEN Str_Fct ∈ (Next_Int <= 6) ? 
 (1.22,2.33) : (2.33,3.43)  (D) 

 
Carreras lengthens an SPU note when it precedes a shorter 

note marking an RC. He lengthens a PU note if the previous 
note is longer, or if it has the same/ or shorter duration but the 
current note is short. These transformations are consistent 
with the long final unit notes which acoustically characterize 
a prosodic unit:  
 

IF narmour(none, gr2) AND Phrasing = SPU AND 
Next_Dur <= -0.25 AND narmour(IP, gr0) AND 
 ((Prev_Dur <= 0.25 AND Tempo > 1.13)  

OR Prev_Dur > 0.25) 
 THEN Str_Fct  ∈  (1.53,2.72) (C) 

 
IF narmour(none, gr2) AND Phrasing = PU AND 
Note_Dur <= 1.5 AND Prev_Dur > 0.25 

THEN Str_Fct  ∈  (2.27,3.01) (C) 
 

Balancing neighboring note duration: The following rule 
has some similarity with the KTH Double Duration rule - 
which says that for two notes having the duration ratio 2:1, 
the short note will be lengthened and the long note shortened. 
In the absence of other context patterns, a note that is half or 
more than the length of the previous one is lengthened to be 
perceived more as being of the same length. At very fast 
tempos the lengthening is not that relevant due to the fact that 
the difference in durations is not that noticeable. 
 

IF narmour(P, gr2) AND Note_Dur <= 0.5 AND 
Prev_Ratio <= 2 

THEN Str_Fct ∈ (Tempo <= 1.53) ? 
 (2.33,3.43) : (1.22,2.33)  (D) 

 
We observed that for the majority of the rules with no more 

context information than the duration ratios of neighboring 
notes, both singers lengthen the current note when shorter, 
and shorten it when longer, than the other note in the ratio 
pair.  The following rule by Domingo is related to Widmer's 
TS1 rule in the following sense: it lengthens a shorter note 
followed by a note three or more times longer if the tempo is 
not very fast and the notes have the same pitch. The longer 
the next note is, the more lengthening is applied. This is the 
converse of TS1, which shortens the second longer note - for 
the same duration ratio - if the tempo is slow. 
 

IF Note_Dur < 0.42  AND narmour(D, gr0) AND  
Tempo < 1.35 
      THEN Str_Fct  ∈  (Next_Ratio < 1.5) ? 3.9 : 2.26  (D) 

 
Some of the rules we obtained for Carreras relate to 

Widmer’s TL2a rule, which says that a note is lengthened if it 
is followed by a longer note and it is in a metrically weak 
position. Below is an example of such a rule: 
 

IF Tempo > 0.45 AND Note_Dur <= 0.25 AND 
Prev_Int > 0 AND Metro = ExtremelyLow AND 
Next_Dur >  0.25  

THEN Str_Fct  ∈  (1.53,2.27)  (C) 
 

Tempo vs stress: One of the non-obvious dependencies that 
we observed is that Carreras' duration modifications depend 
more on tempo (especially for notes longer than 1/8) than 
Domingo's, while they don't seem to depend much on weak 
metric or syllable stress - which is true for Domingo. 

Previous vs following note: In relative terms to the 
neighboring notes, Domingo's decision to modify the 
duration of a short note depends much more on the duration 
of the next, rather than the previous note. For notes longer 
than 1/8 the lengthening of the current note depends 
negatively on the duration of the previous note for both 
singers. 
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Fig. 2. Actual vs predicted note durations.

 
B. Correlation Coefficients 
Although the purpose of this work is not generating 

performances that are similar in style to a singer, it is 
nevertheless interesting to see what are the overall correlation 
coefficients between the performed and predicted 
transformations, and how do these compare to each other 
throughout a musical piece. The average correlation 
coefficients for the three most successful algorithms are 0.65 
for Carreras and 0.53 for Domingo. While these are not 
strong correlations it is important to note that the arias that 
the data comes from have widely diverse tempos and note 
densities, varying between 54 and 110 (tempo for Carreras), 
and between 56 and 98 (tempo for Domingo), while note 
density varies between 3.47 and 5.66 for both singers. Given 
this fact and the number of overall notes, a correlation of over 
0.5 is better than expected. Additional experiments show that 
larger data sets strengthen the models such that almost every 
aria is better - and more consistently - predicted than in the 
case in which the benchmark consists of only the aria itself. 

Whereas the rules that we reported on have good precision, 
not all have good coverage. The average precision of the rules 
with the largest coverage is 0.7 which corresponds to an 
average of 24 instances. The next cluster of rules with an 
average of 10.58 instances has an average precision of 0.86. 

C. Correlation between predicted and performed values 
A property not apparent from the correlation coefficients is 

the extent to which the correlation is uniformly distributed or 
concentrated exclusively within a particular fragment.  Fig. 2 
shows the note-by note duration ratio for one of the aria 
fragments (relative to the score duration) for Carreras and 
Domingo. We plot both the performed values (actual) as well 
as the values predicted by the best singer-specific regression 
model - obtained via Gradient Boosting using support vectors. 
These figures correspond to the fragment from the aria De 
miei bollenti spiriti from La Traviata. The predictions are 
obtained by supplying the aria as a test set and using the 
Multilayer Perceptron algorithm. The average correlation 
coefficients over all arias when validating each aria using the 
test set method are 0.89 for Carreras and 0.79 for Domingo. 

Several other algorithms also give very good predictions; of 
these, a k-nearest neighbor and a bagging algorithm with 
decision tables return predictions that are also uniformly 
distributed over the arias. As Fig. 2 shows, the predictions are 
quite uniformly distributed over the test fragment. Carreras’ 
note durations are better predicted than Domingo’s, although 
Domingo’s model never predicts a shortening when a 
lengthening is performed, or vice versa; this does happen for 
4 of the 28 notes for Carreras.  

 

VI. CONCLUSION 
This paper analyzes how tenors manipulate timing in order 

to produce expressive performances; to do this we 
characterize performances via parameters extracted from 
both the score and the libretto. We employ machine learning 
methods to extract singer-specific patterns of expressive 
singing from performances by Carreras and Domingo. We 
compare and contrast the rules we obtained and we draw 
some analogies between them and some of the general 
expressive performance rules extracted from the literature.  
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